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Abstract

View-based software development is well adopted in for-
ward engineering. However, most reverse engineering tech-
niques still consider a single view of a software system with
restricted scope of analysis. In this paper, we propose a
novel approach that amalgamates dynamic and static views
of a software system. The dynamic view is represented
through profiling information that is extracted from execut-
ing a set of task scenarios that cover frequently used soft-
ware features. The obtained profiling information is then
embedded into a static view recovery process. We propose
a pattern based structure recovery, as static view, that de-
fines the high-level architecture of the software system using
abstract components and interconnections that is defined
using an architecture query language (AQL). In this con-
text, both static and dynamic aspects of the software system
are used to collect software entities into cohesive compo-
nents whose dynamic interactions can be controlled. The
whole recovery process is modeled as a Valued Constraint
Satisfaction Problem (VCSP). A case study with promising
results on the Xfig drawing tool has also been presented.

KEYWORDS: Multi-view recovery; Valued Constraint
Satisfaction Problem; Data mining; Profiling; Pattern
matching; Software architecture recovery; Scenario.

1. Introduction

Modern industrial organizations in different application
domains are deeply involved in various software engi-
neering tasks such as: developing new systems, integrat-
ing legacy assets with modern applications, decentralizing
monolithic systems, and performing various maintenance
activities. In order to sustain their competitiveness in in-
dustry, these organizations require a well maintained high
quality software system to continue their business without
any interruption caused by software failure.

On the other hand, software solution providers seek their
customers among such organizations that lack enough in-
house software expertise to maintain the quality of software
system during the evolution of their hybrid systems. In both
cases, a multi-view and interactive assistant-tool would be
extremely valuable in order to identify the intended soft-
ware system components, and to leverage the knowledge of
the software experts about the impact of the integrated fea-
tures on the system structure.

One key aspect that warrants the success of such solu-
tion providers is the richness of the collection of reverse en-
gineering tools in possession to be able to provide relevant
views that directly address customer needs which are chang-
ing over time. Once a problem is identified and solved, there
will be the next issue which might require a different view.

To pursue this goal, in recent years we have developed
a set of reverse engineering techniques and tools to extract
information from: i)static view: clustering, pattern-based,
and mined-association-based component recovery; ii)com-
bined static and dynamic views: embedding profiling in-
formation into pattern-based component recovery, mining
software features in source code, design pattern extraction
using dynamic traces; and iii)evaluation: association and
edge based architectural evaluation techniques. These tech-
niques have been developed within “Alborz multi-view and
wizard-based toolkit”. Also, to enhance the usability by in-
dustry and research community, these tools are being mi-
grated, or have been implemented, as Eclipse plug-ins.

In this paper, we present a scenario guided dynamic and
static analysis with the goal of controlling the dynamic in-
teractions among cohesive components in a pattern based
structure recovery process. In this approach, the dynamic
(or behavior) view is represented as the realization of fre-
quently used task scenarios by the source code functions.
We obtain profiling information in terms of the number of
function invocations for each function that is involved in ex-
ecution of frequent task scenarios. The obtained dynamic
information is then embedded into the extracted source
graph of the software system to be used for an amalgamated
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static and dynamic view recovery process. The static (or
structure) view is generated using an approximate pattern
matching technique that is modeled as a Valued Constraint
Satisfaction Problem (VCSP) [15]. In this context, a high-
level architecture of the software system is defined using
abstract components and connectors. Where each abstract
component consists of a group of placeholders (as VCSP
variables) to be instantiated by the system functions (as
VCSP values) and an abstract connector is a collection of
function invocations whose cardinality and invocation fre-
quencies (as the VCSP constraints) can be controlled by the
defined pattern. The architectural pattern is defined using
our proprietary language, namely Architecture Query Lan-
guage (AQL) which has been inspired by the ADL’s design.
The search engine performs an approximate matching oper-
ation that assigns values (functions) to variables (placehold-
ers) that best satisfy the static and dynamic constraints.

In order to evaluate the proposed approach, using a case
study of an interactive drawing application a pure-static ap-
proach is compared with our proposed joint static/dynamic
approach. In general, a poorly maintained system through
adding ill-designed patches for different system mainte-
nance activities, causes feature scattering anomaly among
the components which introduces a high volume of dynamic
links between the system components. The proposed ap-
proach is a means for restructuring a legacy software sys-
tem to improve both dynamic and static interactions among
components.

The contributions of this paper are as follows: i) pro-
viding a pattern-based structural reconstruction technique to
control the dynamic interaction of cohesive components; ii)
modeling a multi-view reconstruction approach as a Valued
Constraint Satisfaction Problem; and iii) enhancingAlborz
toolkit [14] to perform the proposed multi-view recovery.

The rest of this paper has been organized as follows: Sec-
tion 2 discusses the related research work from the litera-
ture. Section 3 presents an overview of the proposed multi-
view approach. In Section 4 we elaborate on the steps taken
to produce dynamic information. Section 5 is allocated to
our interactive pattern matching process and modeling the
recovery process. Section 6 presents the approximate pat-
tern matching process. Section 7 discusses our experimen-
tation with the proposed technique. Finally, Section 8 sum-
marizes and concludes our discussion.

2. Related work

The proposed research in this paper is related to the ap-
proaches in software architecture view recovery that extract
more than one view of the software system.

In a previous work we proposed an orchestrated multi-
view software architecture reconstruction environment,
where design, behavior, and structure views of a software

system are extracted in a sequence, i.e., each extracted view
is used as the seed to generate the next view [11]. The
method utilizes feature-specific task scenarios to localize
software features in the source code by obtaining frequent
patterns in the scenario execution traces. The obtained core
functionalities of the software features are used as the seeds
in a software clustering process, hence incorporating behav-
ior semantics into structure recovery. In contrast, in this
paper, we use profiling techniques to extract behavior view;
and structure view is generated using pattern matching tech-
niques. Moreover, instead of sequentially connecting, the
recovered views in our approach are explicitly merged to-
gether.

Vasconcelos et al. [17] present a dynamic reverse en-
gineering approach that extracts the process and scenario
views (from 4+1 views) of Java applications in the form
of UML sequence diagram and use-case scenarios that are
further combined with a static view using a toolkit called
Odyssey [3]. Similar to our approach, they use dynamic
analysis to recover the behavior view of the system along
with complementary views. Riva et al. [9] propose a tech-
nique for architecture recovery using combined static and
dynamic information. Their technique is based on choos-
ing a conceptual architecture and also applying abstrac-
tion techniques on source code to manipulate the concep-
tual architecture. Their technique allows for the creationof
domain-related architectural views for the architecture de-
scription of the system. Similarly in our approach, we use
scenarios with design-derived features to guide the multi-
view recovery process. In a similar context, Deursen et al.
[16] propose a view-based software reconstruction frame-
work that provides a common framework for reporting re-
construction experiences and comparing reconstruction ap-
proaches. Richner et al. [8] propose an approach to extract
static and dynamic views from Java programs. Similar to
our approach, they form a connection for information ex-
change between the two views.

3. Amalgamated static and dynamic model

Figure 1 illustrates the proposed interactive and pattern-
based environment for software analysis using both static
and dynamic properties of software towards a component
based architecture recovery. In this regard, we enhanced
the Alborz [10] architecture recovery toolkit to accom-
modate dynamic information in combination with static
information and utilize a pattern matching technique that
is modeled as a Valued Constraint Satisfaction Problem
(VCSP). The architecture recovery process has three major
stages, as follows.

Stage 1 (Static pre-processing). A comprehensive
discussion of the static pre-processing stage has been
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Figure 1. Multi-view and pattern-based Alborz architectur e recovery environment. The profiling in-
formation generated by frequently used task scenarios are e mbedded into the static view to be used
for controlling the interaction traffic between extracted c omponents.

presented in [13]. In this stage, the software system is
parsed to generate anabstract syntax tree(AST) and
then using a schema, namelyabstract domain model, it is
transformed into a graph representation at a higher level
of abstraction calledsource graph. Such a domain model
provides programming language independence for the
recovery process. The source graph is represented using
a typed attributed relational graph notion defined in [6].
In this notation, nodes represent software constructs, such
as functions, data types, andglobal variables, and edges
represent relationships between these constructs, such as
function-call, datatype-use, andvariable-use. In this stage,
an association-based data mining algorithm [4] is applied
on the source graph that allows us to decomposes the
source graph into smaller regions (search domains) where
each search domain consists of a number of entities that
are associated with a distinguished entity in that domain,
namely main-seed. Finally, in the static pre-processing
stage an association-based similarity matrix is generated
that contains the mutualsimilarity values of every pair of
entities in the system. The generated matrix will be used
by the pattern matching engine in order to extract highly
cohesive components.

Stage 2 (Dynamic pre-processing). In the dynamic
pre-processing stage, first the software system is instru-
mented using a dynamic profiler tool such asgprof [2].
Then, a set of task scenarios that cover common features
of the system are executed, and the list of functions and
the number of their invocations (i.e., call frequencies) are
captured and embedded into source graph and consequently
into both the search domains and the similarity matrix of
the static pre-processing stage. This stage is discussed in
more detail in Section 4.

Stage 3 (Interactive pattern matching). In this stage,
the user defines a conceptual architectural pattern (or archi-
tectural pattern for short) as a collection of abstract com-
ponents and abstract interconnections, where each abstract
component represents a group of placeholders to be instan-
tiated by the system functions, and each abstract connec-
tor between two components represents both static and dy-
namic interactions between two components that can be de-
fined as the architectural constraints. This architecturalpat-
tern is defined using a main-seed selection mechanism that
searches the whole search domains and generates a ranking
list of top N search domains with their detailed specifica-
tions. The user then selects the best search domain from
the list to be used for the next component’s recovery pro-



cess. Finally, the VCSP based search engine will search
to find approximate matches between the defined architec-
ture and the functions obtained in the current search domain
while satisfying constraints with regard to the cardinality of
the connectors and their dynamic interactions. This stage
is discussed in more detail in Sections 5 and 6. Below, the
relevant terminology used in this paper are defined.

Terminology

• Feature: a feature is a realized functional or non-
functional requirement. However, in this paper only
functional features are relevant.

• Frequent feature:a frequent feature is used by the
users of the system more often than other features.
Identifying frequent features requires domain knowl-
edge and statistical study on the usage of the system.

• Scenario:a scenario is a sequence of features that trig-
ger actions of the system and yield an observable result
to the user [5].

• Instrumentation:refers to the process of inserting par-
ticular pieces of code into the software system (source
code or binary image) to generate a profile of the soft-
ware execution.

• Component:a component is a group of functions that
implement a computational unit of a system. Compo-
nents have import and export relations with other com-
ponents.

4. Dynamic pre-processing

In the dynamic pre-processing stage, a set of common
task scenarios are executed on the system and the resulting
execution profiles (in terms of function call frequencies
from different calling functions to each called function)
are captured. This involves the following two steps: i)
instrumentation of the software system; and ii) execution of
a set of scenarios on the instrumented system and analysis
of the resulting execution profiles. In the rest of this section
the above two steps are discussed.

Software system instrumentation
We use the GNU profiler, gprof, to instrument the software
system and capture the execution profiles. In order to use
this tool, one has to compile the source code of the program
using thegcccompiler with profiling options enabled. This
tool provides two types of output:flat profile, and call
graph. The flat profile provides the total amount of time
that the program spends for execution of each function,
whereas the call graph provides the amount of time that

is spent in each function and its children. It also provides
the number of times each function calls its children and is
called by its parents. In this research, we use the call graph
output of the profiler.

Scenarios execution and analysis of profiles
The familiarity of the user with the system’s functionality
and its operation assists in designing the scenarios, how-
ever this is not necessary. The scenarios should cover a set
of “frequently used features” of the system, obtained from
user’s manual, application domain, and documents such as
activity diagrams. To obtain valid function invocation fre-
quencies in the profiles, the user should eliminate redundan-
cies from the set of scenarios. This means a feature should
not be executed more than its normal usage that is deter-
mined by domain knowledge. Finally, the set of selected
scenarios are executed on the instrumented system. We ex-
tract the highest invocation frequency for each function-call
from the execution profiles corresponding to different task
scenarios. In a further step, the obtained frequencies are
embedded into the source graph as thefrequency attribute
of the edges. This attribute will be used in the cost calcula-
tions of the Valued Constraint Satisfaction Problem (VCSP)
model of the pattern matching, discussed in the following
sections.

5. Interactive pattern matching process

We perform an interactive pattern matching process that
is modeled as a Valued Constraint Satisfaction Problem
(VCSP). The pattern matching process incrementally gen-
erates concrete software components that approximately
match with the provided architectural pattern using our
proprietary AQL language. In this context the VCSP
modeling is sensible since the architectural pattern consists
of soft constraints (i.e., highly similar functions within
each component) and hard constrains (i.e., strict limits on
the number of static and dynamic function calls among
components) that can naturally be modeled by VCSP
framework. The interactive pattern matching consists of
two major parts: i) defining a query to represent the archi-
tectural pattern, and ii) performing the approximate pattern
matching to obtain concrete components that conform with
the constraints defined in the architectural pattern.

Modeling architectural pattern using AQL
We present an overview of our enhanced Architectural
Query Language (AQL) that is used for describing a pattern
of abstract components (or modules) and their constrained
connectors (interactions among the components) that will
be used by a matching process to identify a close match
(as concrete architecture) within the structure of the subject
legacy system. The syntax of AQL encourages a structured



description of the architecture. A typical AQL query is il-
lustrated below:

BEGIN-AQL
MODULE: M1

MAIN-SEEDS: func canvasselected
IMPORTS:

FUNCTIONS: func ?IF,
func ?F1(0 .. 4) M2
func ?F2(180 .. 1) M4

EXPORTS:
FUNCTIONS: func ?EF

CONTAINS:
FUNCTIONS: func $CF(4 .. 30),

func canvasselected
RELOCATES: NO:

END-COMPONENT
.....

END-AQL

In the above query the syntax for Imports (Exports)
Functions “?Fu(x..y)” represents an unidentified group of
links (i.e., function invocations) with the group number
“u”, where “x” represents themaximum dynamic inter-
action (i.e., maximum of function invocation frequency)
and “y” represents themaximum static interaction(i.e.,
maximum static link quantity) between the corresponding
components (modules). The above AQL fragment is
interpreted as: module M1 with the main-seed function
canvasselectedhas 30 variables (function placeholders)
that can be assigned by a maximum of 30 functions
(represented by “$CF(4 .. 30)”). Module M1 may import
up to four functions from module M2, however no dynamic
interaction exists under the executed scenarios (shown as
“?F1(0 .. 4) M2”). Module M1 may also import at most
one function from M4 with up to 180 dynamic invocations
on that function under the executed scenarios (represented
by “?F2(180 .. 1) M4”). The matching process will then
search the domains of variables to assign functions (as
values) to placeholders (as variables) such that the internal
constraints (size of the component) and the link constraints
(quantity and the call-frequency of the connector links) will
be satisfied. The notations “?IF” and “?EF” in the import
and export parts denote two unidentified numbers of links
between the current component and any other component
in the query, such that their interactions have not been
constrained by the AQL query. Therefore, “?IR” and “?ER”
are not matched by the matching process, however the
existing links will be shown in the recovered architecture.
In the rest of this section, we present the modeling of the
architecture recovery process.

Modeling recovery process as VCSP
Valued Constraint Satisfaction Problem (VCSP) [15] is an

extension of the conventional Constraint Satisfaction Prob-
lem framework (CSP), that allows us to deal with over-
constrained problems. In the VCSP framework, avalua-
tion (or cost) is associated with each constraint. The task of
assigning a value to a variable in the problem is called an
assignment. The valuation of an assignment is the aggrega-
tion of the valuations of the constraints that are violated by
this assignment. The goal in a VCSP model of a problem
is to find a complete set of assignments with minimum ag-
gregated valuation. Typically, a search algorithm is used to
find an optimal (or sub-optimal) assignment.

Formally, a VCSP framework is defined as a four-tuple
P = (V, D, C,f ), where V is a set of variables, D is a set
of corresponding variable domains, C is a set of constraints
between the variables, andf a valuation function (i.e., cost
function).

In the adopted VCSP model, the nodes of the source
graph, i.e., the functions, are considered as the candidate
values to be assigned to variables of the VCSP. The do-
main of each variable (i.e., a group of eligible functions
that can be assigned to a variable) in a component is the
same as the domain of the main-seed variable in that compo-
nent. As we discussed in the static pre-processing the whole
search space is divided into domains and the functions in
each domain are associated with a distinguished function in
that domain called main-seed. During the pattern matching
process, in order to recover an abstract component we first
choose and assign a main-seed function (as value) to a com-
ponent’s placeholder (as variable). This causes the domain
of the main-seed function to become the domain of each
placeholder (variable) in that abstract component. This step
is performed for each abstract component when that spe-
cific component is being recovered. The pattern matching
process then searches the domain of the variables to find
the best value to variable assignment by minimizing a cost
function. A valuation function(cost function) consists of
three sub-costs: i)component’s internal cost: determined
by the similarities between entities, and static and dynamic
function invocations within the component; and ii)compo-
nent’s interaction cost: determined by the number of the
static function calls and their call frequencies. These two
costs will be discussed in the next sub-section.

6. Approximate pattern matching process

After modeling the architectural pattern as an AQL
query, aA∗ search engine will search for a solution (con-
crete components and connectors) for the pattern query in
an iterative pattern matching process. In this approach, we
use a sub-optimalA∗ search algorithm [13] to obtain a set
of value to variable assignments with minimum cost. The
recovery process can be either incremental (i.e., recovery
of components one at a time) or automatic (i.e., recovery of



all components in one run). In the rest of this section, we
define two types ofsimilarity constraintsthat are used by
theA∗ search algorithm to evaluate the merit of a function
to placeholder assignment in the current component.

Internal similarity constraint
Internal similarity constraint is defined between two func-
tions (values) that are assigned to a pair of placeholders
(variables) within a component. This similarity is defined
based on “static”maximal associationbetween two func-
tions, and the “dynamic” call frequency between two func-
tions in either direction. Maximal association is the prop-
erty of a group of functions that all share a maximal group
of attributes (i.e., called functions, used datatype, and used
variables). Maximal association can be obtained by apply-
ing data mining operationassociation rules miningon the
source graph of the software system [12]. The whole group
of functions and their shared attributes is called anassoci-
ated groupgx. We define a similarity metric between each
pair of functions in anassociated groupgx based on the
number of shared attributes and sharing-functions.

Formally, static similarity between two functionsfi and
fj, denoted assimst(fi, fj), is defined as themaximum
association degreebetweenfi andfj , considering thatfi

andfj may belong to more than one associated groupgx

with a different association degree in eachgx:

simst(fi, fj) = max|gx
assoc(fi, fj, gx)

where:

assoc(fi, fj , gx) = |sharedAttributes(gx)|+
|sharingFunctions(gx)|

2

More details about the steps and rationale for the sim-
ilarity metric simst(fi, fj) can be found in [12]. We in-
tentionally assign a very high internal similarity value con-
straint between the values (fi andfj) of two variables of
a component, to be satisfied; therefore, we force that al-
most all such constraints to be violated. This causes a cost
function costinavg

(defined below) to aggregate the aver-
age of static and dynamic costs (i.e.,costin) of matching
between the candidate functionfi (that is being assigned
to the current variable) and the functions that have already
been assigned to the variables inside that component (i.e.,
otherfj ’s). The value ofcostinavg

is used as a measure
of ranking the partially-matched component by the search
engine.

costin(fi, fj) = 1−(1−
1

4 + freq(fi, fj)
)×simst(fi, fj)

costinavg
(fi, Σfj) =

1

n
×

∑

fj

costin(fi, fj)

where, freq(fi, fj) denotes the number of dynamic
function-calls betweenfi and fj in either direction, and
n is the number of currently assigned functions inside the
component. The rationale for defining this metric is as
follows. If there is no dynamic interaction between two
functions (i.e.,freq(fi, fj) = 0) then costin(fi, fj) is
determined by the 75% of the static similarity between
fi and fj , however if the interaction is very high then
costin(fi, fj) is determined by the 100% of the static simi-
larity. Moreover, for low interaction (i.e.,freq(fi, fj) = 1
or so) costin(fi, fj) would decrease with a high rate, but
the speed of decreasing would slow down for higher inter-
actions (i.e.,freq(fi, fj) >> 1) providing a reasonable
change in the cost function. This behavior is desirable
since it reflects the existence of interaction, however high
interactions would not predominate the whole distance
measure.

External link constraint
An external link constraint is defined between two compo-
nentsCa andCb within the AQL query. This link deter-
mines the maximum number of static function calls and the
maximum number of total call frequencies on these links1.
This link constraint is considered as ahard constraint, i.e.,
it can not be violated by the pattern matching engine and
the violation of such constraint will cause the deletion of
the candidate function from the search domain of that com-
ponent. In other words, the violation of external link con-
straint will prune the search tree and in the worse case all
functions in a variable’s domain may be deleted and con-
sequently the pattern matching process fails, or back-tracks
to the previous component recovery phase and reassigns the
values to the previous component. Therefore, the external
link constraint is used to control both the number of static
interconnections and the dynamic function invocation traf-
fic between every two components in the architectural pat-
tern defined in the AQL query. This control is easily done
by changing the values of parameters for “?Fu(x .. y)” in the
IMPORTS or EXPORTS part of the AQL query. Where, “x”
is the maximum of total call frequencies among two compo-
nents, and “y” is the maximum number of the static function
call links. Therefore, the collection of “x” and “y” control
the overall traffic between two components.

In order to determine the values of “x” and “y” the user
first recovers the components defined in the AQL query
without considering any link constraints among them.
Alborz toolkit will generate a detailed output information
about each individual imported/exported function between
the components. After investigating the existing interaction

1Each functionfi in componentCa may be imported by many func-
tions fj ’s in componentCb, each with a different call frequency. In this
case, we only consider one import link forfj and assign the maximum of
those call frequencies for that single import link.



traffic between the components, the user will restrict the
interaction among the components and run the recovery
process once more, where the static and dynamic interac-
tions among the components will be according to the link
constraints defined by the query.

Figure 2 illustrates a complicated situation where the
assignment of a function to the current variable (place-
holder) in component C4, has generated different kinds
of connector links. However, in our approach multiple
importing (or exporting) of the same functionfj between
two components generates only one static link between
them. Formally, external link costcostlink(fi, Ca, Cb)
caused by assigning functionfi to a placeholder in either
componentCa or Cb is defined as:

costlink(fi, Ca, Cb) =

1−(
remainAfter

remainBefore)×( 1
1+callFreqTotal

)

whereremainBefore(remainAfter) is the difference be-
tween themaximum link quantityand the number of con-
nector links before (after) matching; andcallFreqTotal is
the sum of the call frequencies of the generated links. Note
that we consider the maximum call frequency for a func-
tion during the multiple import or multiple export of the
same function between two components. This is illustrated
in Figure 2 where the currently assigned function to place-
holder is exported to component C3 by two connector links
with call frequencies 0 and 97, where the call frequency 97
is considered. The rationale forcostlink is as follows. After
the current function to placeholder assignment, if no link is
generated the cost is zero. The cost will increase when more
links are generated and the cost is maximum when the max-
imum number of links are reached by the current assign-
ment (i.e.,remainAfter= 0). Also,costlink increases when
the number of links before assignment is close to its maxi-
mum number. However, with the same number of generated
connector links, highercallFreqTotalwill increasecostlink

more.
Finally, the total cost of assignment is defined as:

costtotal(fi, Ca, Cb) =
costinavg

(fi, Σfj) + w × costlink(fi, Ca, Cb)

where functionfj is within componentCb that is linked
to the current componentCa. A high value for the weight
w generates cohesive components with high dynamic links
and low static links, and vice versa.

During the pattern matching process, whenever the
search engine assigns a candidate functionfi to a place-
holder (variable) in the current component, a cost function
costtotal(fi, Ca, Cb) will determine the average similarity
betweenfi within the componentCa as well as the overall
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Figure 2. Import/export links and their call
frequencies caused by assigning a function
to a placeholder during the recovery of com-
ponent C4.

traffic caused by this assignment in terms of the number of
established static and dynamic links that will occur between
the current componentCa and a link componentCb.
With the above valuation strategy, the steps for recovery
of the components according to the component size and
static/dynamic links defined in the pattern query AQL, are
described as five steps below.

• Step 1: the next variable (placeholder) is selected from
the current componentCa to be instantiated.

• Step 2: from the domain of this variable the next value
(candidate functionfi) is selected to be assigned to this
variable.

• Step 3:all “internal similarity constraints” and “exter-
nal link constraints” between the assigned values be-
tween two componentsCa andCb are evaluated and
checked for satisfaction or violation.

• Step 4: the overall cost of the assignment
costtotal(fi, Ca, Cb) is calculated. If the cost is higher
than the maximum cost of the assignments then the
candidate value is discarded, else, the evaluated cost
is used as the ranking criterion for the current compo-
nent and the function is put in the proper place of the
list of the assigned functions.

• Step 5: the best set of function assignments, i.e., least
overall cost of the matching while not violating the link



constraints, for all the variables in the current compo-
nent is the solution for the valued constraint satisfac-
tion problem.

The result of the recovery process is represented as a
concrete componentCa that has import/export relations
with the previously recovered components,Cb, ..., where
the number of the functions inCa is less or equal to the
number of variables that were defined for it in the pattern
query. The case of “less” happens when there is no solution
(i.e., constraints are not met) with the originally specified
number of variables. In the next iteration of the recovery
process, the user can define another query to recover a new
component of the system, or we can revise the AQL query
for the same component and run the pattern matching step
again.

7. Case study

In this section, we present the results of applying the
proposed approach on Xfig drawing tool [1]. The amal-
gamation of dynamic information into static information
incorporates semantics in the recovery process and hence
the whole practice becomes more sensible. In the following
we discuss three steps of the proposed architectural recov-
ery framework, including: static pre-processing, dynamic
pre-processing, and approximate pattern matching on the
Xfig case study.

Static pre-processing
We use Refine C parser [7] to parse the source code
of Xfig and generate the source graph using a domain
model that restricts the types of the entities in the source
graph to functions, data types and global variables. In a
further step, we apply the Apriori data mining algorithm
[4] on the source graph to produce the associated groups
of functions that lead us to generate a similarity matrix
consisting of similarity values between every pair of
system functions. As mentioned earlier, for each entity
in the system a search domain must be generated based
on its corresponding similarity values with other entities.
To do so, for each entity we group all the entities that
have a similarity greater than zero with that entity in its
domain. To reduce the time complexity of the search
process, very large domains are truncated to a manageable
size. This would not affect the recovery process since all
functions with high similarity value with the main seed of
the domain are kept in a sorted array and only functions
with very low similarity values to the main seed are deleted.

Dynamic pre-processing
For the dynamic analysis step, we use GNU gprof profiler
[2] to instrument the Xfig source code and capture the ex-
ecution profiles. Figure 3 presents a set of seven scenarios

each with a different combination of several features of the
Xfig tool. In order to eliminate the possible effects caused
by the execution order of these features, we adopt a set of
scenarios that contain different permutations of these fea-
tures. After executing the scenarios on Xfig system we ex-
tract the frequencies for function-calls from the generated
execution profiles. The frequency that is assigned to each
function-call edge in the source graph is the highest fre-
quency of that edge within the seven generated profiles.

# Scenario
1 “Draw, move, rotate, flip, update, edit, scale.”
2 “Draw, move, rotate, flip, copy, scale.”
3 “Draw, move, flip, rotate, edit, add text, move point,

cut point, change grid, add image, delete.”
4 “Draw, scale, copy, update, add image, flip, move point,

edit, delete.”
5 “Draw, rotate, flip, update, scale, move point,

copy, add point.”
6 “Draw, rotate, cut point, copy, flip, update, scale, delete.”
7 “Draw, cut point, rotate, add text, update, edit, scale,

add image, change grid.”

Figure 3. Generated scenarios for a particular
set of features of Xfig.

Approximate pattern matching
At each iteration of the pattern matching stage, the Alborz
tool provides a list of main-seed suggestions. These main-
seeds are functions that possess high average similarity val-
ues with functions in their domains. The main-seed sugges-
tion algorithm is an approximation of the mainA∗ search
algorithm that computes the average similarity values of
the group of highly cohesive functions around the domain’s
main-seed. The domains are already sorted according to
the highest similarity of the functions to the domain’s main-
seed. In selecting the main-seed for the next domain the
overlap of the core parts of the domains are also consid-
ered so that the resulting components become highly cohe-
sive and less overlapped. In the static analysis these crite-
ria will produce components that are disjoint, however it is
hard to justify the usefulness of these completely disjoint
components without any logical relation to each other. The
proposed dynamic / static analysis is empowered by feature
driven objectives that guide the recovery of logical modules.

Figure 4 illustrates the result of module reconstruction
process consisting of four modules M1 to M4 and for two
casesNo Link ConstraintsandLink Constraintsthat are dis-
cussed below. The corresponding AQL query fragment for
module M1 has been discussed in Section 5. The number
of functions that have been assigned by the search engine to
modules M1 to M4 are: 30, 14, 15, and 10, respectively. For
each generated module in Figure 4, from top to bottom the



Figure 4. The result of architecture reconstruction proces s for two cases; i) NoLink Constraints, where
several dynamic links (import/export functions) exist bet ween Module 1 and Modules 3 and 4; and ii)
Link Constraints, where both static and dynamic constraints have been applie d on the links between
the corresponding modules to control their static and dynam ic interactions.

following information are presented: imported functions;
exported functions, and contained functions. For each part,
one function occupies one full line with corresponding in-
formation. For example, line 8 in the part “Imports Funcs”
of module M1 is repeated below:
8. From M4(43) (F-924) elasticmoveline uelastic.c (52)
This line indicates that M1 imports function “elas-
tic moveline” (with code F-924) from module M4 and this
function physically located in file “uelastic.c” with to-
tal number of functions 52. Moreover, execution of Xfig
scenarios (shown in Figure 3) cause that function “elas-
tic moveline” to be invoked maximum 43 times by different
functions in M1. This is in accordance with the discussion
of the example in Figure 2. The interpretation of the lines in
the “Contains Funcs” part of a module is presented by using
an example in module M1, as follows:

1. (F-624)(3) canvasselected (0.31) ** wcanvas.c(17)
Function “canvasselected” is a main-seed (because of sign
“**”) and has an average similarity value 0.31 to the other
functions in M1, and has been invoked by a maximum fre-
quency 3 by the other functions in M1.

The generated modules have sufficient information to
provide the user with a deep insight into the software sys-
tem and the quality of the recovered architecture. As dis-
cussed earlier in the proposed environment in Section 3
the user first runs the module reconstruction process with
no link constraints in order to generate high cohesive and
high internal dynamic interaction components. This allows
the user to investigate the static and dynamic interactions
among the generated components and to improve the qual-
ity of the obtained components to be less dynamically or
statically inter-dependent. In the next step, the user employs



the link constraints on the import / export parts of the AQL
query to limit the static and dynamic interactions among the
components. The VCSP search engine then identifies a new
module configuration that satisfies the enforced constraints
(if possible). The VCSP search operation will backtrack to
the previously recovered modules to revise the solutions of
the previously found modules as an attempt to generate a
solution for the current module in tightly constrained situa-
tions. The “Link Constraint” part of Figure 4 demonstrates
the result of module reconstruction after constraining the
links between modules M1 with modules M3 and M4 as
discussed in AQL query earlier. A comparison between the
recovered modules in two cases of Figure 4 indicates how
VCSP search has met the AQL constraints. The link con-
straint between M1 and M2 (i.e., “?F1(0 .. 4) M2”) has
caused that the four imported functions with dynamic inter-
actions (in No Link Constraints results) to disappear in the
recovery with Link Constraints situation. Also the link con-
straints between M1 and M4 (i.e., “?F2(180 .. 1) M4”) has
caused one of two imported functions to be rejected after
applying the constraints, however, in this case the dynamic
interaction (i.e., 180) was not a restricting factor.

Therefore, both static and dynamicLink Constraints
have been applied on the links between the corresponding
modules to control their static and dynamic interactions,
hence producing modules that are best suitable for deploy-
ing over the internet for distributed computing applications.

8. Conclusion
In this paper, we introduced a novel method of amal-

gamating static information with run-time dynamic infor-
mation in a pattern-based architectural recovery technique.
The static information is the foundation of the approach,
where the dynamic information adds semantics and focused
information to the whole practice through embedding pro-
filing of frequently used features. A seamless integration of
these two rather orthogonal types of information while chal-
lenging is very fruitful reverse engineering activity. In this
respect, the proposed approach attempted to contribute in
different ways, including: reducing the inherent complex-
ity of the pattern matching search by reducing the search
domain size; focusing on the essential parts of a large soft-
ware systems; controlling the dynamic interactions among
components as a means to leveraging distributed computing
properties of the software. In order to inject dynamic in-
formation into our pattern matching engine, we run a num-
ber of frequently used task scenarios on the software sys-
tem and recorded the dynamic function invocation frequen-
cies for different system functions. These dynamic informa-
tion were further embedded into the source graph edges and
consequently were incorporated into measuring the overall
cost function of the pattern matching process. Finally, the
whole recovery process has been modeled as a Valued Con-
straint Satisfaction Problem (VCSP), where functions repre-

sent values and component placeholders represent variable.
Through a case study, we presented how controlling the dy-
namic interaction among recovered components is sensible
in restructuring a software system.
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