An Amalgamated Dynamic and Static Architecture Reconstrution Framework
to Control Component Interactions

Kamran Sartipi and Nima Dezhkam
Dept. Computing and Software, McMaster University
Hamilton, ON, L8S 4K1, Canada
{sartipi, dezhkah@mcmaster.ca

Abstract On the other hand, software solution providers seek their
customers among such organizations that lack enough in-
View-based software development is well adopted in for- house software expertise to maintain the quality of soféwar
ward engineering. However, most reverse engineering tech-system during the evolution of their hybrid systems. In both
niques still consider a single view of a software system with cases, a multi-view and interactive assistant-tool woed b
restricted scope of analysis. In this paper, we propose aextremely valuable in order to identify the intended soft-
novel approach that amalgamates dynamic and static viewsware system components, and to leverage the knowledge of
of a software system. The dynamic view is representedthe software experts about the impact of the integrated fea-
through profiling information that is extracted from execut tures on the system structure.
ing a set of task scenarios that cover frequently used soft- One key aspect that warrants the success of such solu-
ware features. The obtained profiling information is then tion providers is the richness of the collection of revernse e
embedded into a static view recovery process. We proposegineering tools in possession to be able to provide relevant
a pattern based structure recovery, as static view, that de-views that directly address customer needs which are chang-
fines the high-level architecture of the software systemgusi ing over time. Once a problem is identified and solved, there
abstract components and interconnections that is definedwill be the next issue which might require a different view.
using an architecture query language (AQL). In this con- To pursue this goal, in recent years we have developed
text, both static and dynamic aspects of the software systena set of reverse engineering techniques and tools to extract
are used to collect software entities into cohesive compo-information from: i)static view clustering, pattern-based,
nents whose dynamic interactions can be controlled. Theand mined-association-based component recovergoii)-
whole recovery process is modeled as a Valued Constraintbined static and dynamic viewsmbedding profiling in-
Satisfaction Problem (VCSP). A case study with promising formation into pattern-based component recovery, mining
results on the Xfig drawing tool has also been presented. software features in source code, design pattern extractio
using dynamic traces; and ii@valuation association and
KEYWORDS: Multi-view recovery; Valued Constraint —edge based architectural evaluation techniques. Thelse tec
Satisfaction Problem; Data mining; Profiling; Pattern niques have been developed withiédltorz multi-view and
matching; Software architecture recovery; Scenario. wizard-based toolKit Also, to enhance the usability by in-
dustry and research community, these tools are being mi-
grated, or have been implemented, as Eclipse plug-ins.
In this paper, we present a scenario guided dynamic and
static analysis with the goal of controlling the dynamic in-
Modern industrial organizations in different application teractions among cohesive components in a pattern based
domains are deeply involved in various software engi- structure recovery process. In this approach, the dynamic
neering tasks such as: developing new systems, integrat{or behavior) view is represented as the realization of fre-
ing legacy assets with modern applications, decentrglizin quently used task scenarios by the source code functions.
monolithic systems, and performing various maintenanceWe obtain profiling information in terms of the number of
activities. In order to sustain their competitiveness in in function invocations for each function that is involved iz e
dustry, these organizations require a well maintained highecution of frequent task scenarios. The obtained dynamic
quality software system to continue their business without information is then embedded into the extracted source
any interruption caused by software failure. graph of the software system to be used for an amalgamated

1. Introduction

static and dynamic view recovery process. The static (orsystem are extracted in a sequence, i.e., each extracted vie
structure) view is generated using an approximate patternis used as the seed to generate the next view [11]. The
matching technique that is modeled as a Valued Constraintmethod utilizes feature-specific task scenarios to loealiz
Satisfaction Problem (VCSP) [15]. In this context, a high- software features in the source code by obtaining frequent
level architecture of the software system is defined using patterns in the scenario execution traces. The obtained cor
abstract components and connectors. Where each abstraftinctionalities of the software features are used as thdssee
component consists of a group of placeholders (as VCSPin a software clustering process, hence incorporatinglseha
variables) to be instantiated by the system functions (asior semantics into structure recovery. In contrast, in this
VCSP values) and an abstract connector is a collection ofpaper, we use profiling techniques to extract behavior view;
function invocations whose cardinality and invocation fre and structure view is generated using pattern matching tech
guencies (as the VCSP constraints) can be controlled by theniques. Moreover, instead of sequentially connecting, the
defined pattern. The architectural pattern is defined usingrecovered views in our approach are explicitly merged to-
our proprietary language, namely Architecture Query Lan- gether.
guage (AQL) which has been inspired by the ADL's design. Vasconcelos et al. [17] present a dynamic reverse en-
The search engine performs an approximate matching opergineering approach that extracts the process and scenario
ation that assigns values (functions) to variables (plalckh views (from 4+1 views) of Java applications in the form
ers) that best satisfy the static and dynamic constraints. of UML sequence diagram and use-case scenarios that are
In order to evaluate the proposed approach, using a casdéurther combined with a static view using a toolkit called
study of an interactive drawing application a pure-stgtica Odyssey [3]. Similar to our approach, they use dynamic
proach is compared with our proposed joint static/dynamic analysis to recover the behavior view of the system along
approach. In general, a poorly maintained system throughwith complementary views. Riva et al. [9] propose a tech-
adding ill-designed patches for different system mainte- nique for architecture recovery using combined static and
nance activities, causes feature scattering anomaly amonglynamic information. Their technique is based on choos-
the components which introduces a high volume of dynamicing a conceptual architecture and also applying abstrac-
links between the system components. The proposed aption techniques on source code to manipulate the concep-
proach is a means for restructuring a legacy software sys-tual architecture. Their technique allows for the creatibn
tem to improve both dynamic and static interactions amongdomain-related architectural views for the architectuze d
components. scription of the system. Similarly in our approach, we use
The contributions of this paper are as follows: i) pro- scenarios with design-derived features to guide the multi-
viding a pattern-based structural reconstruction teakaiq view recovery process. In a similar context, Deursen et al.
control the dynamic interaction of cohesive componenis; ii [16] propose a view-based software reconstruction frame-
modeling a multi-view reconstruction approach as a Valued work that provides a common framework for reporting re-
Constraint Satisfaction Problem; and iii) enhanciigorz construction experiences and comparing reconstruction ap
toolkit [14] to perform the proposed multi-view recovery. proaches. Richner et al. [8] propose an approach to extract
The rest of this paper has been organized as follows: Secstatic and dynamic views from Java programs. Similar to
tion 2 discusses the related research work from the litera-our approach, they form a connection for information ex-
ture. Section 3 presents an overview of the proposed multi-change between the two views.
view approach. In Section 4 we elaborate on the steps taken
to produce _dynamic informati_on. Section 5 is aIIoca_ted to 3 Amalgamated static and dynamic model
our interactive pattern matching process and modeling the
recovery process. Section 6 presents the approximate pat-

tern matching process. Section 7 discusses our experimen- Figure 1 lllustrates the proposed inter_activ_e and pa“e”.“
tation with the proposed technique. Finally, Section 8 sum- based environment for software analysis using both static
marizes and concludes our discussion ' and dynamic properties of software towards a component

based architecture recovery. In this regard, we enhanced
the Alborz [10] architecture recovery toolkit to accom-
2. Related work modate dynamic information in combination with static
information and utilize a pattern matching technique that
The proposed research in this paper is related to the apis modeled as a Valued Constraint Satisfaction Problem
proaches in software architecture view recovery that ektra (VCSP). The architecture recovery process has three major
more than one view of the software system. stages, as follows.
In a previous work we proposed an orchestrated multi-
view software architecture reconstruction environment, Stage 1 (Static pre-processing) A comprehensive
where design, behavior, and structure views of a softwarediscussion of the static pre-processing stage has been

Static Interactive
Pre-processing Pattern Matching

/ \ E Module-
: Interconnection
Software System = System analysis pattern
« Domain & Document
C/Pascal/ ... = Decision making AQL query
Dynamic Parsing : i _-..Query =
Pre-processing : generation

Frequencies are
obtained from
execution of
frequent scenarios

Embed into mining
source graph,
domains, and
similarity matrix

Search domains &

N > Pattern matching
Similarity matrix / ! engine using VCSP

Figure 1. Multi-view and pattern-based Alborz architectur e recovery environment. The profiling in-
formation generated by frequently used task scenarios are e mbedded into the static view to be used
for controlling the interaction traffic between extracted c omponents.

presented in [13]. In this stage, the software system is Stage 2 (Dynamic pre-processing) In the dynamic
parsed to generate aabstract syntax tregAST) and pre-processing stage, first the software system is instru-
then using a schema, namelipstract domain modglt is mented using a dynamic profiler tool such ggrof [2].
transformed into a graph representation at a higher levelThen, a set of task scenarios that cover common features
of abstraction calledource graph Such a domain model of the system are executed, and the list of functions and
provides programming language independence for thethe number of their invocations (i.e., call frequencie® ar
recovery process. The source graph is represented usingaptured and embedded into source graph and consequently
a typed attributed relational graph notion defined in [6]. into both the search domains and the similarity matrix of
In this notation, nodes represent software constructd) suc the static pre-processing stage. This stage is discussed in
asfunctions data types and global variables and edges more detail in Section 4.

represent relationships between these constructs, such as

function-call datatype-useandvariable-use In this stage,)))

an association-based data mining algorithm [4] is applied ~ Stage 3 (Interactive pattern matching) In this stage,

on the source graph that allows us to decomposes thdhe user defines a conceptual architectural pattern (ot-arch

source graph into smaller regions (search domains) wherdectural pattern for short) as a collection of abstract com-
each search domain consists of a number of entities thaonents and abstract interconnections, where each abstrac

are associated with a distinguished entity in that domain, COMPonentrepresents a group of placeholders to be instan-
namely main-seed Finally, in the static pre-processing tiated by the system functions, and each abstrac_t connec-
stage an association-based similarity matrix is generated©" Petween two components represents both static and dy-
that contains the mutuaimilarity values of every pair of namic interactions between two components that can be de-
entities in the system. The generated matrix will be used fined as the architectural constraints. This architecpag

by the pattern matching engine in order to extract highly tern is defined using a main-seed_ selection mechanism th{:\t
cohesive components. searches the whole search domains and generates a ranking

list of top N search domains with their detailed specifica-
tions. The user then selects the best search domain from
the list to be used for the next component’s recovery pro-

cess. Finally, the VCSP based search engine will searchis spent in each function and its children. It also provides
to find approximate matches between the defined architecthe number of times each function calls its children and is
ture and the functions obtained in the current search domaircalled by its parents. In this research, we use the call graph
while satisfying constraints with regard to the cardiryadit output of the profiler.

the connectors and their dynamic interactions. This stage

is discussed in more detail in Sections 5 and 6. Below, the Scenarios execution and analysis of profiles

relevant terminology used in this paper are defined. The familiarity of the user with the system'’s functionality
and its operation assists in designing the scenarios, how-
Terminology ever this is not necessary. The scenarios should cover a set

of “frequently used features” of the system, obtained from
e Feature: a feature is a realized functional or non- Uuser’s manual, application domain, and documents such as
functional requirement_ However, in this paper On|y aCtiVity diagl’ams. To obtain valid function invocation{re
functional features are relevant. guencies in the profiles, the user should eliminate redundan
cies from the set of scenarios. This means a feature should
o Frequent feature:a frequent feature is used by the not be executed more than its normal usage that is deter-
users of the system more often than other features.mined by domain knowledge. Finally, the set of selected
Identifying frequent features requires domain knowl- scenarios are executed on the instrumented system. We ex-
edge and statistical study on the usage of the system. tract the highest invocation frequency for each functiafi-c
i . . from the execution profiles corresponding to different task
¢ Scenario:a scenario is a sequence of features that rig- g.enarios. In a further step, the obtained frequencies are
ger actions of the system and yield an observable resu“embedded into the source graph asfteguency attribute
to the user [5]. of the edges. This attribute will be used in the cost calcula-
« Instrumentationrefers to the process of inserting par- tions of the Valued Constrair_lt Sati_sfaction P_roblem (VCSP)
ticular pieces of code into the software system (source mod_el of the pattern matching, discussed in the following
code or binary image) to generate a profile of the soft- SECtIONS.
ware execution.

_ _ 5. Interactive pattern matching process
e Componenta component is a group of functions that

implement a computational unit of a system. Compo-
nents have import and export relations with other com-
ponents.

We perform an interactive pattern matching process that
is modeled as a Valued Constraint Satisfaction Problem
(VCSP). The pattern matching process incrementally gen-
)) erates concrete software components that approximately
4. Dynamic pre-processing match with the provided architectural pattern using our

proprietary AQL language. In this context the VCSP

In the dynamic pre-processing stage, a set of commonmodeling is sensible since the architectural pattern stssi
task scenarios are executed on the system and the resultingf soft constraints (i.e., highly similar functions within
execution profiles (in terms of function call frequencies each component) and hard constrains (i.e., strict limits on
from different calling functions to each called function) the number of static and dynamic function calls among
are captured. This involves the following two steps: i) components) that can naturally be modeled by VCSP
instrumentation of the software system; and ii) execution o framework. The interactive pattern matching consists of
a set of scenarios on the instrumented system and analysisvo major parts: i) defining a query to represent the archi-
of the resulting execution profiles. In the rest of this smctti tectural pattern, and i) performing the approximate patte
the above two steps are discussed. matching to obtain concrete components that conform with

the constraints defined in the architectural pattern.

Software system instrumentation
We use the GNU profiler, gprof, to instrument the software ~ Modeling architectural pattern using AQL
system and capture the execution profiles. In order to useWe present an overview of our enhanced Architectural
this tool, one has to compile the source code of the programQuery Language (AQL) that is used for describing a pattern
using thegcccompiler with profiling options enabled. This of abstract components (or modules) and their constrained
tool provides two types of outputflat profile and call connectors (interactions among the components) that will
graph The flat profile provides the total amount of time be used by a matching process to identify a close match
that the program spends for execution of each function, (as concrete architecture) within the structure of theesttbj
whereas the call graph provides the amount of time thatlegacy system. The syntax of AQL encourages a structured

description of the architecture. A typical AQL query is il- extension of the conventional Constraint SatisfactiorbPro

lustrated below: lem framework (CSP), that allows us to deal with over-
BEGIN-AQL constrained problems. In the VCSP frameworkyadua-
MODULE: M1 tion (or cost) is associated with each constraint. The task of
MAIN-SEEDS: func canvaselected assigning a value to a variable in the problem is called an
IMPORTS: assignmentThe valuation of an assignment is the aggrega-
FUNCTIONS: func ?IF, tion of the valuations of the constraints that are violated b
func ?F1(0 .. 4) M2 this assignment. The goal in a VCSP model of a problem
func ?F2(180 .. 1) M4 is to find a complete set of assignments with minimum ag-
EXPORTS: gregated valuation. Typically, a search algorithm is used t
FUNCTIONS: func ?EF find an optimal (or sub-optimal) assignment.
CONTAINS: Formally, a VCSP framework is defined as a four-tuple
FUNCTIONS: func $CF(4 .. 30), P =(V, D, C, f), where V is a set of variables, D is a set
func canvasselected of corresponding variable domains, C is a set of constraints
RELOCATES: NO: between the variables, arfda valuation function (i.e., cost
END-COMPONENT function).
_____ In the adopted VCSP model, the nodes of the source
END-AQL graph, i.e., the functions, are considered as the candidate

values to be assigned to variables of the VCSP. The do-
main of each variable (i.e., a group of eligible functions

that can be assigned to a variable) in a component is the
same as the domain of the main-seed variable in that compo-
nent. As we discussed in the static pre-processing the whole
search space is divided into domains and the functions in
and “y” represents thenaximum static interactiori.e., each dom{;\in are assopiated with a'distinguished functior_1 in
maximum static link quantity) between the corresponding that domain called main-seed. During the pattern matching

components (modules). The above AQL fragment is PfOC€SS, in order to recover an abstract component we first
interpreted as: module M1 with the main-seed function €N00S€ and assign a main-seed function (as value) to a com-

canvasselectedhas 30 variables (function placeholders) ponents placeholder (a_s variable). This causes t'he domain
that can be assigned by a maximum of 30 functions of the maln-seeq fungtlon to become the domain of each
(represented by “$CF(4 .. 30)"). Module M1 may import placeholder(varlable) in that abstract component. Tleig st

up to four functions from module M2, however no dynamic 'S performed for each abstract component when that spe-

interaction exists under the executed scenarios (shown a$Ic component is being recovered. The pattern matching
“2F1(0 .. 4) M2"). Module M1 may also import at most process then searches the domain of the variables to find

one function from M4 with up to 180 dynamic invocations the best value to variable assignment by minimizing a cost

on that function under the executed scenarios (represente&mCtion' AvaIu.aFion functiorj(c'ost function) consis_ts of
by “?F2(180 .. 1) M4"). The matching process will then three sub-costs: ifomponent’s internal costdetermined

search the domains of variables to assign functions (asby the similarities between entities, and static and dycami

values) to placeholders (as variables) such that the iatern UNction invocations within the component; anddgmpo-
constraints (size of the component) and the link conssaint NENt'S interaction costdetermined by the number of the
(quantity and the call-frequency of the connector links) wi static fu_nctlon' calls anq their call frequenc!es. These two
be satisfied. The notations “?IF” and “?EF” in the import COStS will be discussed in the next sub-section.

and export parts denote two unidentified numbers of links

between the current component and any other componen6. Approximate pattern matching process

in the query, such that their interactions have not been

constrained by the AQL query. Therefore, “?IR" and “?ER” aAfter modeling the architectural pattern as an AQL
are not matched by the matching process, however thequery, a4* search engine will search for a solution (con-
EXiSting links will be shown in the recovered architecture. crete Components and Connectors) for the pattern query in
In the rest of this section, we present the modeling of the an jterative pattern matching process. In this approach, we

In the above query the syntax for Imports (Exports)
Functions “?Fu(x..y)" represents an unidentified group of
links (i.e., function invocations) with the group number
“u”, where “X” represents thanaximum dynamic inter-
action (i.e., maximum of function invocation frequency)

architecture recovery process. use a sub-optimall* search algorithm [13] to obtain a set
of value to variable assignments with minimum cost. The
Modeling recovery process as VCSP recovery process can be either incremental (i.e., recovery

Valued Constraint Satisfaction Problem (VCSP) [15] is an of components one at a time) or automatic (i.e., recovery of

all components in one run). In the rest of this section, we where, freq(f;, f;) denotes the number of dynamic
define two types osimilarity constraintsthat are used by function-calls betweeryf; and f; in either direction, and
the A* search algorithm to evaluate the merit of a function n is the number of currently assigned functions inside the

to placeholder assignment in the current component. component. The rationale for defining this metric is as
follows. If there is no dynamic interaction between two
Internal similarity constraint functions (i.e., freq(f:, f;) = 0) then cost;,(fi, f;) Is

Internal similarity constraint is defined between two func- determined by the 75% of the static similarity between
tions (values) that are assigned to a pair of placeholdersf; and f;, however if the interaction is very high then
(variables) within a component. This similarity is defined cost;,(f;, f;) is determined by the 100% of the static simi-
based on “staticmaximal associatiotetween two func- larity. Moreover, for low interaction (i.e freq(f;, f;) =1
tions, and the “dynamic” call frequency between two func- or so) cost;,(fi, f;) would decrease with a high rate, but
tions in either direction. Maximal association is the prop- the speed of decreasing would slow down for higher inter-
erty of a group of functions that all share a maximal group actions (i.e.,freq(f;, f;) >> 1) providing a reasonable
of attributes (i.e., called functions, used datatype, as&tlu change in the cost function. This behavior is desirable
variables). Maximal association can be obtained by apply-since it reflects the existence of interaction, however high
ing data mining operatioassociation rules miningn the interactions would not predominate the whole distance
source graph of the software system [12]. The whole groupmeasure.
of functions and their shared attributes is calledaaroci-
ated groupg,. We define a similarity metric between each External link constraint
pair of functions in amassociated groug, based on the An external link constraint is defined between two compo-
number of shared attributes and sharing-functions. nentsC, andC, within the AQL query. This link deter-
Formally, static similarity between two functiorfsand mines the maximum number of static function calls and the
f;, denoted assimg(f;, f;), is defined as thenaximum maximum number of total call frequencies on these fnks

association degregetweenf; and f;, considering thaff; This link constraint is considered asard constrainti.e.,
and f; may belong to more than one associated grgup it can not be violated by the pattern matching engine and
with a different association degree in eagh the violation of such constraint will cause the deletion of
) the candidate function from the search domain of that com-
simst(fi, f;) = max|g, assoc(fi, fj, g) ponent. In other words, the violation of external link con-

straint will prune the search tree and in the worse case all
functions in a variable’s domain may be deleted and con-
assot i, f;,g») — |sharedAttributedy,)|+ sequently t_he pattern matching process fails, or baclk_$rac
sharingFunctiong.)| to the previous component recovery phase and reassigns the
2 values to the previous component. Therefore, the external
_) _link constraint is used to control both the number of static
More details about the steps and rationale for the sim-jnterconnections and the dynamic function invocation-traf

ilarity metric sim.:(fi, f;) can be found in [12]. We in- fic petween every two components in the architectural pat-
tentionally assign a very high internal similarity valueeo iarn defined in the AQL query. This control is easily done

straint between the valueg;(and f;) of two variables of y changing the values of parameters for “?Fu(x .. y)” in the
a component, to be satisfied; therefore, we force that al-\(\PORTS or EXPORTS part of the AQL query. Where, “x”
most all such constraints to be violated. This causes a cos{s the maximum of total call frequencies among two compo-

function cost;y,,, (defined below) to aggregate the aver- pents and “y” is the maximum number of the static function
age of static and dynamic costs (i.eost;,,) of matching

between the candidate functigh (that is being assigned
to the current variable) and the functions that have already In order to determine the values of “x” and “y” the user

been assigned to the variables ins_ide that component (i'e'first recovers the components defined in the AQL query

o;her{(j_s). ;’he Valulf Ofcosﬁ”&avg Is used asba mheasure hWithout considering any link constraints among them.

of ranking the partially-matched component by the Search oo toolkit will generate a detailed output information

engine. about each individual imported/exported function between
1 the components. After investigating the existing intaract

T rear,) < b

where:

call links. Therefore, the collection of “x” and “y” control
the overall traffic between two components.

costin(fi, ;) =1—(1

1Each functionf; in componentC,, may be imported by many func-

1 tions f;'s in componeniCy, each with a different call frequency. In this

coStin,,, (fl, Efj) = —X Z costm(fi, f]) case, we only consider one import link fy and assign the maximum of
n £ those call frequencies for that single import link.

traffic between the components, the user will restrict the

interaction among the components and run the recovery c3
process once more, where the static and dynamic interac-

tions among the components will be according to the link

constraints defined by the query.

One func in C4
i Is exported to C3

One func in C3
has been imported
by C4 before

. Two funcs P
Figure 2 illustrates a complicated situation where the imported by

assignment of a function to the current variable (place- one funcin C4
holder) in component C4, has generated different kinds

of connector links. However, in our approach multiple CforrenttaSSIignﬂHelrg c4
importing (or exporting) of the same functigfy between oriline fo placenoicer
two components generates only one static link between Connector-link ... s
. Placeholder

them. Formally, external link costostiink(fi, Ca, Ch) to be assigned
caused by assigning functiofy to a placeholder in either next
component’, or C} is defined as:

C1 Cc2

coStiink (f'L 5 Cm Cb)

1— remalnAfter é

remalnBefor

1
1+callFreqTotal)

Figure 2. Import/export links and their call
frequencies caused by assigning a function
to a placeholder during the recovery of com-
ponent C4.

whereremainBeforgremainAftej is the difference be-
tween themaximum link quantitynd the number of con-
nector links before (after) matching; amdllFreqTotalis
the sum of the call frequencies of the generated links. Note
that we consider the maximum call frequency for a func-
tion during the multiple import or multiple export of the
same function between two components. This is illustratedtraffic caused by this assignment in terms of the number of
in Figure 2 where the currently assigned function to place- established static and dynamic links that will occur betwee
holder is exported to component C3 by two connector links the current componeidt, and a link component.
with call frequencies 0 and 97, where the call frequency 97 With the above valuation strategy, the steps for recovery
is considered. The rationale fasst,;,,,. is as follows. After ~ of the components according to the component size and
the current function to placeholder assignment, if no Ik i Static/dynamic links defined in the pattern query AQL, are
generated the costis zero. The cost will increase when moredescribed as five steps below.
links are generated and the cost is maximum when the max-
imum number of links are reached by the current assign-
ment (i.e.remainAfter= 0). Also, cost;,i iNncreases when

the number of links before assignment is close to its maxi- Step 2: from the domain of this variable the next value
mum number. However, with the same number of generated (candidate functior;) is selected to be assigned to this

e Step 1:the next variable (placeholder) is selected from
the current componeidt, to be instantiated.

connector links, higherallFregTotalwill increasecost;;, variable.
more.
Finally, the total cost of assignment is defined as: e Step 3:all “internal similarity constraints” and “exter-
nal link constraints” between the assigned values be-
costiotar(fir Ca, Cb) = tween two componentS, andC; are evaluated and
costing,, (fiSf;) + w x costik(fi, Ca, C) checked for satisfaction or violation.

e Step 4: the overall cost of the assignment
costiotal(fi, Ca, Cp) is calculated. If the cost is higher
than the maximum cost of the assignments then the
candidate value is discarded, else, the evaluated cost
is used as the ranking criterion for the current compo-
nent and the function is put in the proper place of the
list of the assigned functions.

where functionf; is within component;, that is linked
to the current componeidt,. A high value for the weight
w generates cohesive components with high dynamic links
and low static links, and vice versa.

During the pattern matching process, whenever the
search engine assigns a candidate funcfipto a place-
holder (variable) in the current component, a cost function
costiotai(fi, Ca, Cp) Will determine the average similarity e Step 5:the best set of function assignments, i.e., least
betweenf; within the component’, as well as the overall overall cost of the matching while not violating the link

constraints, for all the variables in the current compo- each with a different combination of several features of the
nent is the solution for the valued constraint satisfac- Xfig tool. In order to eliminate the possible effects caused
tion problem. by the execution order of these features, we adopt a set of

The result of the recovery process is represented as Scenarios that contain different permutations of these fea

concrete component’, that has import/export relations tures. After executing the scenarios on Xfig system we ex-
with the previously reaéovered componen, where tract the frequencies for function-calls from the genetate
the number of the functions i@, is less or équal to the execytion profiles. .The frequency that i‘.c’ assign.ed to each
number of variables that were defined for it in the pattern function-call edge in t_he_ source graph is the h|ghgst fre-
query. The case of “less” happens when there is no solutionduency of that edge within the seven generated profiles.
(i.e., constraints are not met) with the originally spedifie
number of variables. In the next iteration of the recovery
process, the user can define another query to recover a ney
component of the system, or we can revise the AQL query

Scenario

1 | “Draw, move, rotate, flip, update, edit, scale”
2

3

“Draw, move, rotate, flip, copy, scale.”
“Draw, move, flip, rotate, edit, add text, move pgint

for the same component and run the pattern matching step cut point, change grid, add image, delete”

again. 4 | “Draw, scale, copy, update, add image, flip, move point
edit, delete”

7. Case study 5 | “Draw, rotate, flip, update, scale, move pojnt

copy, add point.”
“Draw, rotate, cut point, copy, flip, update, scale, delete.
7 | “Draw, cut point, rotate, add text, update, edit, scale
add image, change grid.”

(e}

In this section, we present the results of applying the
proposed approach on Xfig drawing tool [1]. The amal-
gamation of dynamic information into static information
incorporates semantics in the recovery process and hence
the whole practice becomes more sensible. In the following Figure 3. Generated scenarios for a particular
we discuss three steps of the proposed architectural recov- set of features of Xfig.
ery framework, including: static pre-processing, dynamic
pre-processing, and approximate pattern matching on the

Xfig case study. Approximate pattern matching
At each iteration of the pattern matching stage, the Alborz
Static pre-processing tool provides a list of main-seed suggestions. These main-

We use Refine C parser [7] to parse the source codeseeds are functions that possess high average similakity va
of Xfig and generate the source graph using a domainues with functions in their domains. The main-seed sugges-
model that restricts the types of the entities in the sourcetion algorithm is an approximation of the maii* search
graph to functions, data types and global variables. In aalgorithm that computes the average similarity values of
further step, we apply the Apriori data mining algorithm the group of highly cohesive functions around the domain’s
[4] on the source graph to produce the associated groupsnain-seed. The domains are already sorted according to
of functions that lead us to generate a similarity matrix the highest similarity of the functions to the domain’s main
consisting of similarity values between every pair of seed. In selecting the main-seed for the next domain the
system functions. As mentioned earlier, for each entity overlap of the core parts of the domains are also consid-
in the system a search domain must be generated basedred so that the resulting components become highly cohe-
on its corresponding similarity values with other entities sive and less overlapped. In the static analysis these crite
To do so, for each entity we group all the entities that ria will produce components that are disjoint, however it is
have a similarity greater than zero with that entity in its hard to justify the usefulness of these completely disjoint
domain. To reduce the time complexity of the search components without any logical relation to each other. The
process, very large domains are truncated to a manageablproposed dynamic / static analysis is empowered by feature
size. This would not affect the recovery process since all driven objectives that guide the recovery of logical module
functions with high similarity value with the main seed of Figure 4 illustrates the result of module reconstruction
the domain are kept in a sorted array and only functions process consisting of four modules M1 to M4 and for two
with very low similarity values to the main seed are deleted. cased\o Link ConstraintgndLink Constraintghat are dis-
cussed below. The corresponding AQL query fragment for
Dynamic pre-processing module M1 has been discussed in Section 5. The number
For the dynamic analysis step, we use GNU gprof profiler of functions that have been assigned by the search engine to
[2] to instrument the Xfig source code and capture the ex- modules M1 to M4 are: 30, 14, 15, and 10, respectively. For
ecution profiles. Figure 3 presents a set of seven scenariogach generated module in Figure 4, from top to bottom the

Module 1 Module 2 Module 3 Module 4
[mports Fune ports Funcs: ports Kuncs:

Y -(F- e y nports Funes:
i Rgfg; g?ﬁg} ‘fi,’::ﬁ;—f‘(’]';‘;z‘ﬂ‘fi UIANSIAEL) oy MI1(0) (F-1000) place_ellipse_ [1. From: M2(0) «(F-681) translate_lif "™
3 Froin N2(3) :(IT-GSI)transia[e_llne i [ranslaﬁec(li} 2. From: M3(0) «(F-1051) copy_compot | 2. From: M2(0) :(F-683) translate_sp xports Funcs:
4. From: MZ(-I) :(F-683)rran-s]ale_qpljnc = !ransla.iec(iQ 3. From: M3(0) :(F-1053) compound_be | 3. From: M2(0) :(F-684) translate_cof
5. From: M2(1) :(F-672) set_lastposition u_undo.c (37) e . 1. To: MI(172) :(F-913)el
6. From: M2(1) :(P-673) set_newpasition u_undo.c (37) feorti-Euncs: ports Rines: 2. To: MI1(43) (F-924)ela
7. From: M4(172) :(F-913) elastic_line u_elastic.c (52 To M (F Y 2 5 .
8. From: MA:43)) +(F-924) elastic_moveline T elast(ir.c){SZ - Tor ML(0) M3(0) :(F-684) translate, | 1. To: M2(0) :(F-1051) copy_compq gntaing Funes:

1
2. To: M1(0) :(F-758)redisplay_compe | 2. To: M2(0) :(F-1053) compound_|
§ 3. Tor MI(3) M3(0) :(F-681)translate
Exports Funes: 4. To: MI(1) M3(0) :(F-683)translate. hntains Funcs:
5
6

1. (F-913)(32) elastic_line

2 2. (F-924)(3) elastic_movelin

’ 2 i . . . To: MI(1) «(F-672)set_lastposition _ - '

L To: M2(0) :(F-1000) place_ellipse_x u_drag.c (30) To: MU(1) {F-673)set_newposition | 1. (F-701)31) do_object_search (0] o ﬁE}g}ﬂ;@ﬁ,ﬁ:;t—;“;mgg

; X . 2. (B-T13)(13) do_point_search (0] 5 (F_1631)(6) create lineobi

Contains Funes: ntains Funcs: 3. (F-T00)31) init_search (0.35) 6. EF-]GSZ%((E;;::n:_;i‘encbif

. 4, (F-1398)0 how t = -reate reopoly

L (P-624)3) canvas selected (031) ** w_eanvasc (17) | 1. (F-900y0)place_elipse ©012) * | 5 (F300x0) hip compourd (06 & (i SLOKD) create_tegpoly

8. (E-1025X0) place_compound_x _ (0.48) u_drage(30) | 3. (F-673)(0) set_newposition (0.16) 7. (F-1258)(0) scale_compound (0 10 (F-1623 éU ‘c-reate_ 1‘0[)l

4. (F-1010)(3) place_line_x (0.47) u_drag.c (30) 4. (F-672)(0) set_lastposition (0.16) 8. (F-1177)0) shift Tigure (0.64) - (F-1623)(0) ~Picob)
5. (F-1015)0) place_text_x (0.47) u_drag.c (30) 5. (F-758)(0) redisplay_compound (0. | g (F-ll&i){O)madnn:ompoundobjccl
6. (F-1005)(0) place_arc_x (0.47) u_drag.c (30) 6. (F-594)(0) place_object_orig_posn 10. (E-L137)(0) read_1_3_compoundob
7. (F-1020)(1) place_spline_x (0.47) u_drag.c (30) 7. (F-593)(0) place_object (0.16) 1]‘ (F-1135)0) l‘ead_i_ﬁ—ohiecﬁ ©
8. (E-1000)(1) place_ellipse_x (0.47) u_drag.c (30) 8. (F-684)(0) translate_compound (0.2 | |5 (F‘M-l?)(O)wriw_ c_o-m_pound. ©
9. (F-1657)(1) init_arc_drawing ~ (0.56) d_arc.c(7) 9. (F-591)(0) move_object-1 (0.20) 1 (F-1053)(0) compound._bound ’

Link Constraints Module 2 Module 3 Module 4
imports Funcs: ot i
’ ris F t
1. From: M2(0)(?F1-1) «{F-794) toggle_ellipsemarker u_markers.c (34) 1. From: M1(0) (F-1000) place_ellipse_x PEFRC 1ports Funes:
2. From: Md4(172)(7F2-1) :(F-913)elastic_line u_elastic.c (52) 9 o M3(0) :(F-1053)con1p&md Ebiind ports Funcs:
- tports Funcs:
Exports Funcs: orts Funcs: 1. To: M2(0) :(F-1053)compound_b
1. To: M1(172)(7F2-1) :(F-913]
L To: M2(0) (F-1000) place_ellipse_x u_drag.c (30) 1. To: ML(O)?F1-1) (F-794)toggle_ellipser | mtains Funcs:
lContains Funcs: ’ antains Funes:
omiains Eunes: tains Funcs: 1. (F-701)(31) do_object_search (0.
2. (F-700)(31) init T 034 T AT
1. (F-624)(3) canvas_selected (0.31) ** w_canvas.c(17) 1. (F-999)(0) place_ellipse (0.12) ** | 3 gFf'fl’S::lS;i: _psneiirlc;earc{h)((}% L (F 913)(321353an_||:1|€) .(0‘-3
2. (F-1236)(0) init_boxscale_ellipse (0.53) ¢_scale.c (43) 2. (F-794)(2) toggle_ellipsemarker (0.29) St e S 2. (F-1630)(32) get_intermediatep
e e 5 W 5 G 2 4. (F-698)(23) erase_objecthighlight _ : -
3. (F-1628)(2) init_trace_drawing (0.56) d_line.c (8) 3. (F-998)(0) array_place_ellipse (0.13) 5. (E-1398)(0) popup. show.comments 3. (F-1631)(6) create_lineobject
4. (F-1010)(3) place_line_x (0.4T) u_dragc (30) 4. (F-388)(0) paste (0.28) w_emdpar | 2 (1—‘-1391)(0)5?&711 ound (057 | & (F-I614)3) create_splineobject
5. (F-1025)(0) place_compound_x (0.48) u_drag.c (30) 5. (F-10)(0) init_zoombox_drawing ~ (0.15) 7 (F~129S)(0)rnltjil_te cupm i 'EO' 5. (F-1662)(1) create_arcobject
6. (F-1020)(1) place_spline_x ~ (0.47) u_drage (30) 6. Eg-ﬁéﬂ)g}dﬂjgmﬁ (.24 035 "= | & (P-103)(0) compound pbmmd © | 6 (F-1619)0) create_regpoly
7. (F-1000)(1) place_ellipse x _(0.47) u_drag.c (30) x EF:HT;: 0; git:x-r}'ﬁ;‘; (‘0 335)) vl 9 (r-1565%0) init_distibedges (0u | 7 (F-1651)(0) create_boxobject
g. (E“{gég}(g)p%w_lext__m })(}f?ﬂ u_ddrag._r_(%m 5. (F-795)2) toggle. dlipsehighlight (0.29) 10. (F-1564)(0) init_distrib_centres (¢ 8. (F-1655)(0) create_arc_boxobj
0. (p'|104)(0-mf“.e.‘?;c—} .Tt ’ 53-: b g‘u: .,’h‘ 10 0. (F-775)(0) toggle_csrhighlight (0.29) 11. (F-1568)(0) distribute_vertically (1 | 9 (F-1623)(0) create_picobj
10" (16832} i Do, raving ‘)(057) N ;p:b((:x)‘(dl L. (F-748)(0) redisplay_pageborder (0.29) | 12 (F-1567)(0) distribute_horizontally 10. (F-1661)2) get_arcpoint (0
B e e A A 2 (F416)0)serup_grid (028) w_r | 13 (F-1366)(0) adjusi_object_pos (0
i ('Filﬁn;[(z;mn're i { -(0’56.) el (3. (F-399)(0) fit_room ~ (0.23) wndp | 18, (F-1177)(0) shift_figure ~ (0.50)
T A AT d i 14. (F-483)(0) pw_point (0.18) w_dra | 15 (F-1258)(0) scale_compound (0.5

Figure 4. The result of architecture reconstruction proces s for two cases; i) NoLink Constraintswhere
several dynamic links (import/export functions) exist bet ween Module 1 and Modules 3 and 4; and ii)
Link Constraints where both static and dynamic constraints have been applie d on the links between
the corresponding modules to control their static and dynam ic interactions.

following information are presented: imported functions; 1. (F-624)(3) canvaselected (0.31) ** wcanvas.c(17)
exported functions, and contained functions. For each part Function “canvaselected” is a main-seed (because of sign
one function occupies one full line with corresponding in- “**”) and has an average similarity value 0.31 to the other
formation. For example, line 8 in the part “Imports Funcs” functions in M1, and has been invoked by a maximum fre-
of module M1 is repeated below: guency 3 by the other functions in M1.

8. From M4(43) (F-924) elastimoveline uelastic.c (52) The generated modules have sufficient information to
This line indicates that M1 imports function “elas- proyide the user with a deep insight into the software sys-
tic.moveline” (with code F-924) from module M4 and this tem and the quality of the recovered architecture. As dis-
function physically located in file “welastic.c” with to- ¢yssed earlier in the proposed environment in Section 3
tal number of functions 52. Moreover, execution of Xfig {he yser first runs the module reconstruction process with
scenarios (shown in Figure 3) cause that function “elas- g |ink constraints in order to generate high cohesive and
tic.moveline”to be invoked maximum 43 times by different g internal dynamic interaction components. This allows
functions in M1. This is in accordance with the discussion he yser to investigate the static and dynamic interactions
of the example in Figure 2. The interpretation of the lines in among the generated components and to improve the qual-
the "Contains Funcs” part of a module is presented by usingjty of the obtained components to be less dynamically or
an example in module M1, as follows: statically inter-dependent. In the next step, the user eyspl

the link constraints on the import / export parts of the AQL sent values and component placeholders represent variable
query to limit the static and dynamic interactions among the Through a case study, we presented how controlling the dy-
components. The VCSP search engine then identifies a newnamic interaction among recovered components is sensible
module configuration that satisfies the enforced constaint in restructuring a software system.

(if possible). The VCSP search operation will backtrack to

the previously recovered modules to revise the solutions of R€ferences

the previously found modules as an attempt to generate a

solution for the current module in tightly constrained aitu ~ [1] Xfig User Manual, URL = http://www.xfig.org/userman/.
tions. The “Link Constraint” part of Figure 4 demonstrates [2] Gnu gprof. http://www.gnu.org/software/binutils/maal/gprof-
the result of module reconstruction after constraining the 2.9.1/gprof.html.

links between modules M1 with modules M3 and M4 as [3] Odyssey project. http://reuse.cos.ufrj.br/site/.

discussed in AQL query earlier. A comparison between the (4] r. agrawal and R. Srikant. Fast algorithms for mining@ss
recovered modules in two cases of Figure 4 indicates how ciation rules. InProceedings of the 20th International Con-

VCSP search has met the AQL constraints. The link con- ference on Very Large Databasemges 487-499, 1994.
straint between M1 and M2 (i.e., "?F1(0 .. 4) M2") has |5 G, Booch, J. Rumbaugh, and I. Jacobshe Unified Mod-
caused that the four imported functions with dynamic inter- eling Language User Guidedddison Wesley, 1999.

actions (in ,NO I,‘mk Constrf.:llnts resu!ts) to dlsapp('ear in the [6] M. A. Eshera and K. S. Fu. A similarity measure between
recovery with Link Constraints situation. Also the link con attributed relational graphs for image analysis. Seventh

straints between M1 and M4 (i.e., “?F2(180 .. 1) M4") has International Conference on Pattern Recognitipages 75—
caused one of two imported functions to be rejected after 77,1984,
applying the constraints, however, in this case the dynamic [7] Reasoning Systems Inc., Palo Alto, CARefine User's
interaction (i.e., 180) was not a restricting factor. Guide version 3.0 edition, May 1990.

Therefore, b_Oth static a_nd dynamiank Constraints . 8] T. Richner and stephane Ducasse. Recovering high-level
have been applied on the links between the corresponding ™~ yjews of object-oriented applications from static and dy-

modules to control their static and dynamic interactions, namic information. InProceedings of IEEE ICSM'99
hence producing modules that are best suitable for deploy- page 13, 1999.
ing over the internet for distributed computing applicatio [9] C.Rivaand J. V. Rodriguez. Combining static and dynamic

8. Conclusion views for architecture reconstruction. Rroceedings of the

In this paper, we introduced a novel method of amal- IEEE CSMR pages 47-55, 2002.
gamating static information with run-time dynamic infor- [10] K. Sartipi. Alborz: A query-based tool for software hrc
mation in a pattern-based architectural recovery techmiqu tecture recovery. Iin Proceedings of the IEEE IWPC'01
The static information is the foundation of the approach, pages 115-116, Toronto, Canada, May 2001.
where the dynamic information adds semantics and focused!1] K. Sartipi, N. Dezhkam, and H. Safyallah. An orches-
information to the whole practice through embedding pro- trated multi-view sowaare architecture re’constructimie
filing of frequently used features. A seamless integration o rc?:trglfgrté (')gzroceemngs of IEEE WCRE'DBages 61-70,
these two rather orthogonal types of information while ehal ’
lenging is very fruitful reverse engineering activity. Mg [12] K. Sartipi and K. Kontogiannis. Component clusteriragd
respect, the proposed approach attempted to contribute in 27 maximal association. IRroceedings of WCRE'Opages
different ways, including: reducing the inherent complex- 103-114, Stutgart, Germany, October 2001.
ity of the pattern matching search by reducing the searchl13] K. _Sartipi and K. Kontogiannis. On _modeling sof_tware ar
domain size; focusing on the essential parts of a large soft- ~ Chitécture recovery as graph matching. Rroceedings of
ware systems; controlling the dynamic interactions among ICSM'03 pages 224-234, 2003.
components as a means to leveraging distributed computing14] K. Sartipi, L. Ye, and H. Safyallah. Alborz: An intera
properties of the software. In order to inject dynamic in- toolkit to extract static and dynam[c views of a software-sys
formation into our pattern matching engine, we run a num- tzeon(;é InProceedings of the ICPC'0fage to appear, June
ber of frequently used task scenarios on the software sys- -) o)
tem and recorded the dynamic function invocation frequen- [15] T- Schiex, H. Fargier, and G. Verfaillie. Valued comstt
cies for different system functions. These dynamic informa satisfaction problems: Hard and easy problems>risceed-
tion were further embedded into the source graph edges and ings of the IJCAI-95pages 631-637, 1995.
consequently were incorporated into measuring the overalll16] A. van Deursen, etal. Symphony: View-driven software a
cost function of the pattern matching process. Finally, the ~ Chitecture reconstructioWVICSA'04 pages 122-132, 2004.
whole recovery process has been modeled as a Valued Corl17] A. Vasconcelos, et al. An approach to program comprehen

straint Satisfaction Problem (VCSP), where functionseepr sion through reverse engineering of complementary soéwar
views. INPCODA'05 pages 58-62, USA, 2005.

