
Component Clustering Based on Maximal Association
�

Kamran Sartipi
�

Kostas Kontogiannis
�

University of Waterloo
Dept. of Computer Science

�
and,

Dept. of Electrical & Computer Engineering
�

Waterloo, ON. N2L 3G1, Canada�
ksartipi, kostas � @swen.uwaterloo.ca

Abstract

In this paper, we present a supervised clustering frame-
work for recovering the architecture of a software system.
The technique measures the association between the sys-
tem components (such as files) in terms of data and control
flow dependencies among the groups of highly related en-
tities that are scattered throughout the components. The
application of data mining techniques allows to extract the
maximum association among the groups of entities. This as-
sociation is used as a measure of closeness among the sys-
tem files in order to collect them into subsystems using an
optimization clustering technique. A two-phase supervised
clustering process is applied to incrementally generate the
clusters and control the quality of the system decomposi-
tion. In order to address the complexity issues, the whole
clustering space is decomposed into sub-spaces based on
the association property. At each iteration, the sub-spaces
are analyzed to determine the most eligible sub-space for
the next cluster, which is then followed by an optimization
search to generate a new cluster.

1 Introduction

With the increase of size and complexity of the software
systems, the role of software architecture recovery as a pre-
lude for most software maintenance tasks is increasingly
important. The approaches to architectural recovery usu-
ally employ a clustering technique based on the properties
of coupling and cohesion or association, in order to partition
the software system into cohesive subsystems.

In this paper, we present a supervised (user-assisted)
clustering technique, as a framework for architectural re-

�
This work was funded by IBM Canada Ltd. Laboratory - Center for

AdvancedStudies (Toronto) and the National Research Council of Canada.

covery, and define two similarity metrics based on the asso-
ciation property in highly related groups of system entities.

In this context, the software system is represented as a
graph, where the system entities are denoted as nodes and
data/control dependencies are denoted as edges. The appli-
cation of data mining techniques on this graph reveals the
groups of highly related entities.

The level of dependency among the groups of system en-
tities is the basis for extracting association values between
system components such as files. In this respect, the com-
ponent association is defined as the degree to which, the
entities in one component are related to the entities in an-
other component. We define a new similarity measure be-
tween two system components in terms of the component
association values and use it for the clustering algorithm.

The proposed supervised clustering technique, itera-
tively generates the subsystems of components (files) using
the similarity measure between the system components and
based on a two-phase optimization clustering process. The
search space for the whole clusters are decomposed into
a number of sub-spaces to handle the search complexity.
At each iteration of the clustering process, a selection al-
gorithm is used to select a sub-space for the next cluster,
and an optimization search algorithm is used to collect the
highly similar components around the core component of
the selected sub-space, known as main-seed.

In a nutshell, this paper first provides a new similarity
metric based on maximal association property (maximum
number of shared properties) between two groups of entities
such as files; next discusses a supervised clustering tech-
nique for decomposing a large system of files into cohesive
subsystems; and finally discusses a search space reduction
technique to manage the search complexity. The results of
experimenting with two systems are also presented.

We implemented a prototype reverse engineering tool,
Alborz [15], to recover the architecture of a software sys-
tem as cohesive components. Depending on the user exper-

tise and knowledge about the system, the user interaction
can range from a few steps of guidance to the clustering
algorithm, up to determining a whole cluster. The tool rep-
resents the result of the clustering as the subsystems and
interconnections representation using both HTML pages to
browse and analyze the quality of the result, and different
graphs to visualize and investigate the graph topological
properties.

2 Background

Cluster analysis is defined as: the process of classifying
entities into subsets that have meaning in the context of
a particular problem [6]. The clustering techniques are
designed to extract an existing cluster structure of entities.
However, the choice of technique affects the detected
clusters which may or may not be the existing structure. In
the following, we briefly discuss the issues pertaining to
clustering.

Clustering algorithms
Wiggerts [25], Anquetil [2], and Tzerpos [23] have
surveyed different aspects of clustering algorithms for soft-
ware systems. Important clustering algorithms that apply to
the field of software reverse engineering can be categorized
as: i) hierarchical algorithms, where each entity is first
placed in a separate cluster and then gradually the clusters
are merged into larger and larger clusters until all entities
are in a single cluster; ii) optimization algorithms, where
a partitioning of the whole system is considered and
with iterative entity movements between partitions the
partitions are improved to an optimal partition; and iii)
graph-theoretic algorithms, where an entity relationship
graph of the system is considered and the algorithm
searches to find subgraphs with special properties such as
maximal connected subgraphs or minimal spanning trees.
A supervised clustering process requires guides from the
user in different stages to perform the clustering, whereas,
an unsupervised clustering only relies on the similarity ma-
trix consisting of the similarities of every pair of entities [6].

Similarity metrics
A similarity metric is defined so that two entities that are
alike possess a higher similarity value than two entities that
are not alike. Different methods for similarity measure fall
into two general categories:

The first category is based on relationships between the
entities in the form of function call, where the similarity
is intuitively measured based on the static occurrences of
the calls between the functions. The second category is
based on shared properties (called feature) between two en-
tities. Patel provides an interesting social relation analogy
between “finding similar entities to an entity” and “finding

the friends of a person in a party” [12].
There are a number of similarity measures proposed in

the literature and Wiggerts provides a summary of different
categories namely association coefficients, correlation co-
efficients, and probabilistic measures [25]. An evaluation
of these similarity metrics can be found in [4]. We are inter-
ested in the association coefficient based similarity metrics.

In the related literature, there are many proposals for
measuring similarity (or distance) between the entities
based on single or multiple criteria including: i) data
binding of functions via global variables [5]; ii) sharing
a single feature [8] or a vector of features [12]; and
inter-/intra-connectivity relations among modules [10]. In
this connection, our proposed similarity metric is based on
multiple features such as function, type, and variable to
extract association, hence, it is more general than single
criterion metrics.

Related work
In [10] a partitioning method is used to partition a group
of system files into a number of clusters. A hill-climbing
search considers different alternatives based on neighboring
partitions, where the initial partition is randomly selected.
In comparison, our method carefully finds a collection of
rather separated and highly qualified sub-spaces that can be
viewed as an initial partition of clusters, and then a search
algorithm selects a sub-optimal group of files for each clus-
ter. Therefore, the chance of trapping in a local optimum
caused by random partitioning and hill-climbing, is elimi-
nated.

In [24], a number of system structural properties are used
as evidences to cluster the system files into a hierarchy of
clusters. The method uses subgraph dominator nodes to find
subsystems of almost 20 members, and builds up the hier-
archy of subsystems accordingly. To simplify the compu-
tation, the interactions of more than 20 links to/from a file
are disregarded. In contrast, our technique does not assume
any pre-existing structure for the system such as directory
structure, instead relies on an overall data/control flow de-
pendencies among the system entities to be used for cluster-
ing.

Our work also relates to approaches on concept lattice
analysis in using maximal association property [9]. A
concept is a group of entities with maximal shared prop-
erties. In these techniques, a matrix of functions and their
attributes (i.e., called/used functions, types, and variables)
is built, from which a concept lattice is generated. The
clustering algorithm then tries to analyze the structural
properties of the concepts to partition them into clusters,
where a cluster is a small set of concepts with large
overlapped attributes. In contrast, we encode the maximal
association property of a concept into a similarity metric
and use it in a clustering technique.

2

Software

selection and
clustering

 &

among clusters

Tool distributes

interconnections

system
Generating Iterative sub-space

(CLUSTERING)
(DISTRIBUTION)

(PRE-PROCESS)

Clusters
Domain & Document

Subsystems &

un-grouped files

User relocates files
G

component similarity

sub-spaces
& database of

Figure 1. Supervised clustering framework.

Relation to our previous work
In our initial work on the development of a framework for
software architecture recovery [18], we presented a new en-
vironment for applying data mining techniques on reverse
engineering. Moreover, we used a query language to define
abstract modules and interconnections and a search algo-
rithm based on a commonly used score function (Jaccard) to
instantiate the abstract modules and interconnections. The
original environment has been formalized in terms of graph
pattern matching technique which has been presented in
[17]. Following the development of an architectural recov-
ery system, in [16] we presented a metric to be used for
evaluation of a system in terms of the modularity quality
and design properties of the system. Specific characteristics
of a developed prototype tool-set have been discussed in a
short paper [15].

In the current paper, we present an incremental cluster-
ing technique based on a new similarity metric, as well as
its application on two systems. In summary, the contribu-
tions of this paper include: i) proposal of a two stage super-
vised incremental clustering environment based on main-
seed selection and optimization search; ii) definition of two
new similarity measures, namely ”entity-association” and
”mutual component-association” for clustering at two lev-
els of abstraction based on maximal association property;
iii) comparison of two techniques for extracting the “max-
imal association” property among the system entities; and
iv) use of a bounded queue heuristic for the branch and
bound search algorithm to control the complexity of the
search process.

In the following sections, we discuss the notion of max-
imal association between two entities, and then extend it to
define the notion of association between two components.

3 Framework for supervised clustering

The proposed approach to supervised clustering consists
of three phases (Figure 1).

In the first phase, pre-process, the software system is
parsed and presented as a graph1 with nodes as source code
entities (i.e., file, function, type, and variable), and edges

1The adopted graph formalism has been discussed in [16].

as data and control flow dependencies (i.e., call, define, set,
update, and declare). The low-level relations between enti-
ties are aggregated into more abstract relations (i.e., call and
use) to be used for the architectural level of the system and
are represented as the source model graph

�
. Using a data

mining algorithm, the entities in graph
�

are grouped based
on the association property, and the result is represented as
a collection of domains, denoted as ��� ��� , where each do-
main corresponds to a system entity. Based on the entity
domains in ��� ��� the similarity metrics between files are
determined. Also the group of system files (whole search
space) is decomposed into a collection of sub-spaces to be
used for the clustering algorithm.

In the second phase, clustering, two distinct operations
are performed for generating each subsequent cluster: i)
a sub-space selection algorithm analyzes the collection of
sub-spaces to provide a ranking list of the qualified sub-
spaces for the next cluster, and the user selects a sub-space
from this list; and ii) an optimization clustering algorithm
searches to find the similar files in the selected sub-space to
put them in a cluster. The result is shown to the user and if
required the next iteration is performed.

In the third phase, distribution, the role of the user in-
creases. The user can: i) allow the tool to distribute a por-
tion of the ungrouped files among the clusters based on the
closeness values of individual files to particular clusters; or
ii) selectively relocate the files between the clusters based
on cluster quality or size consideration.

4 Maximal association property

Most clustering techniques attempt to detect highly co-
hesive components, hence, producing a modular clustered
system [10, 12, 11, 8, 9, 3]. In a software system con-
sisting of modules, cohesion is a measure of the “rela-
tive functional strength of a module” [13]. A number of
authors view the cohesion as “coherence” [11] or “intra-
connectivity” [10] which is in fact a form of external prop-
erty of a function as opposed to internal properties extracted
by the slicing methods [3]. The proposals in this group con-
sider a number of shared features for each function and de-
termine the cohesion as the degree of sharing different sets
of features such as: global variables, function calls, or data
types [9, 7]. This property is referred to as association coef-
ficient in clustering literature, and is considered as the most
suitable property to detect two similar entities [4]. Two dif-
ferent techniques that detect maximal association (i.e., max-
imum number of shared features) among the groups of en-
tities in a software system belong to mathematical concept
analysis and data mining domains. In the following sub-
section, we compare these two techniques using the same
example for both techniques, shown in Figures 2 and 3.

3

(a) Context table

F3
A1,A2,A3 A4, A6

A5

F1
A7
F2

F5

F4

F2
F1

F3
F4
F5

X X X X X X
X

X X X
X X X

X X X X X

F7 T3 T1 V2 V3 T2F2

({F1, F3, F5}, {F2, F7, T3})

A1 A2 A3 A4 A5 A6 A7

(b) Concept lattice

({F1, F4, F5}, {T1, V3})

Figure 2. Application of concept lattice anal-
ysis in extracting maximal association.

4.1 Mathematical concept analysis

Recently, the application of mathematical concept anal-
ysis in reverse engineering has been investigated [21, 9]. In
this formalism, a binary relation between objects2 and their
attributes is represented as a lattice which provides signifi-
cant insight into the structure of the relation. A concept is a
maximal collection of objects all sharing a maximal group
of attributes. In a software system, the objects are func-
tions, the attributes are functions, types, and variables, and
the binary relation is a data or control flow dependency. The
main idea is then to partition the lattice so that small sets of
concepts with overlapped attributes are detected. The dif-
ficulty in partitioning lies in resolving the overlapped con-
cepts among different clusters which has resulted in unsuc-
cessful approaches [22].

Figure 2(a) illustrates the table representation (context
table) of a relation between five functions (F1-F5) and seven
attributes (A1-A7), where , the relation represents an aggre-
gation of function call and data-type/variable use. Every
two rows (or two columns) can be swapped without change
in the concepts. In this table, a concept corresponds to a
maximal rectangle consisting of particular rows and arrows.
Figure 2(b) illustrates the concept lattice of the context ta-
ble in part (a). Each node of the lattice corresponds to a
concept. A concept lattice has the following characteristics:

� Each lattice node (i.e., a concept) is labeled with ob-
jects (functions) and attributes, except for the top and
bottom nodes that may be unlabeled.

� Every object has all attributes that are above it in the
lattice (directly above or separated by some links).

� Every attribute exists in all objects that are below it in
the lattice (directly below or separated by some links).

2Here, the notion of object is different from object in object oriented
paradigm.

Existing relations
among entities in

a software system

F1

F2 F7 T3

F5F3

3-itemset
frequent

F1 F5F4

T1 V3

2-itemset

frequent

Itemset

({F1,F3,F5}, {F2,F7,T3})

Baskets

({F1, F4, F5}, {T1,V3})

Baskets of items

F7
T1
T3
V2
V3

F4F2
F5

F1
F2
F5
F7
T3

F1
F2
F7

F1 F2 F3 F4 F5

F9
T2

F3
T1
V2
V3

F1 call-F F7....
F4 use-V V2....

F1 call-F F2

T1
T3
V3

F5 use-V V3

Figure 3. Application of data mining in ex-
tracting maximal association, in [18, 19].

For example, the node labeled
� ����� ���	� ��
�
 in the lattice

corresponds to the concept ��
���������������������
��������! ��	�!�"� �
which means each of the functions ���#�$�%�����!� has
all attributes ���#�&�' ��	�!� . Also the node labeled
“ �)(*�&�'+ ” in the lattice corresponds to the concept
��
��������'(,�����"�"�-
��.(,�	�!+�� � with similar interpretation.
Such interesting properties are not easily observable in the
context table of a large software system.

An alternative technique from data mining domain (be-
low) also detects the maximal association among entities.

4.2 Data mining

The application of data mining in reverse engineering
has already been discussed in our early work [18, 19]. In
this subsection, we repeat some definitions from [18] to en-
able us to compare the advantage of data mining technique
over concept lattice technique in producing a similarity met-
ric based on the maximal association property.

Most data mining algorithms operate on a database of
market transactions in the form of market baskets and their
contained items, and generate a collection of frequent i-
itemsets (/102
3�#454768�). A frequent itemset has the same
interpretation as a concept in the concept lattice analysis.
Figure 3 illustrates the process of generating frequent item-
sets from the database of system entities and relationships,
representing the context table in Figure 2(a). The result-
ing frequent itemsets ��
9�:�����������'�����;
9�� "���'<��	=)�"� � and
��
��������'(,�����"�"�-
�=��#�->?��� � are in the form of tuple of sets
(
 baskets � ,
 itemsets �). These two frequent itemsets are
the same as two concepts specified in Figure 2.

The frequent itemsets are generated using the Apriori al-
gorithm [1]. The input to the Apriori algorithm is the set of
entities and relationships in the software system, as shown
in Figure 3. The Apriori algorithm generates all possible

4

frequent itemsets, so that the number of baskets in each
frequent itemset is not less than a user-defined threshold
min-baskets. The generated frequent itemsets are catego-
rized into large groups, based on the size / of the itemset
(/.0
3�#4 4 6 �). Below, three frequent 5-itemsets (5 items in
each itemset) from an experiment with a system are shown:

({F396, F403, F816}, {F399, T27, V196, V264, V298})
({F774, F804, F807}, {F397, T27, V259, V312, V361})
({F774, F800, F807}, {F407, F608, T5, V259, V361})

The prefixes � �&= ��> correspond to the function, aggre-
gate type, and global variable, respectively.

The Apriori data mining technique has some advantages
in generating groups of entities with maximal associations
in comparison with the concept analysis technique:

� The quantity of the generated frequent itemsets is con-
trolled by the user-defined min-baskets value. As a
simple guidance, the user can start from the min-
baskets value of 2 and increase it so that for a middle-
size system (� 50 KLOC), the maximum size of the
generated itemsets is � 10, and the total number of the
generated frequent itemsets is � 20K.

� The resulting frequent itemsets provide a listing of all
maximal associated groups which facilitate the encod-
ing of association structure of the groups into a sim-
ilarly measure, whereas this information is scattered
throughout the neighboring nodes in a concept lattice.

In the following subsection, we introduce a new similar-
ity metric (namely ent-assoc) between two system entities
such as functions, aggregate types, or global variables to be
used for clustering3. However, the focus of this paper is
component clustering, and we use ent-assoc to define the
similarity measure between two components.

4.3 Similarity measure between two entities

Association in a graph is a property “ ��������� ” among two
or more source nodes that share one or more sink nodes
(through graph edges). In analogy with data mining ter-
minology, we refer to the sink nodes as “itemset” and the
source nodes as “basketset”. In this sense, the whole group
of itemset and basketset are denoted as an associated group.
The association assoc �
	��	�
	
������� � between two entities 	��
and 	
� in an associated group ��� is an undirected relation
which is defined as:

assoc �
	 � �
	 � ��� � ��� � /���	�����	�� ��� � � ���
� � ����6 	��!��	�� �"� � � �

3We have compared the properties of this metric with the Jaccard met-

ric and have used it to cluster the system entities into cohesive modules.
However, the space limitation prevents us to discuss them in this paper.

Itemset

AssocDeg = 4.5 AssocDeg = 5AssocDeg = 4

 Associated groups with the same number of entities

Basketset

Figure 4. The notion of entity association.

Where, the value or degree of association between 	�� and 	
�
is a positive real number. In general, the number of shared
entities (itemsets) contributes more on closeness of the en-
tities in an associated group than the number of sharing en-
tities (baskets). This is also implied from the discussion on
cohesion in section 4. In Figure 4, three associated groups
with the same number of entities but different association
degrees (assocDeg) are shown. The properties of such as-
sociation measure are as follows:

� It is meant for identifying the members of a group of
highly associated entities in a system.

� It is not normalized, i.e., its value is not restricted be-
tween 0 and 1, instead it depends on the size and form
of the group of entities.

� It considers the data types and variables as members
of a group with functions, as opposed to considering
them as attributes of functions which cause only the
functions to be grouped.

The similarity between two entities 	 � and 	 � , denoted
as ent-assoc �#	 � �
	 � � , is defined as the maximum association
degree between 	 � and 	 � , considering that 	 � and 	 � may
belong to more than one associated group � � with different
association degree in each ��� . Formally:

ent-assoc �#	��	�
	
� �$� �%��& � '�(*),+!+�-�. �#	����
	!�"����� �

Domain of a node
We represent a software system as a graph

�/� �
0 �21 � ,
where 0 �
�3 � ��3 � ��454 45��354�� is the set of system entities
and 1 �
�6 � �26 � ��454 45��6�7.� is the set of relationships between
entities. The domain of a node 3�� in graph

�
, denoted as

�8� , is defined as: a collection of the graph nodes 3:9 ’s that
are associated with node 3�� along with their similarity val-
ues ent-assoc �;3��"�23<9 � with respect to 3 � . The node 3 � is
called the main-node of the domain �=� . Formally:

� � �
 �;3 � ��3 9 �
� � � 3 � ��3 9 0>0@?A� �
ent-assoc �;3 � �23 9 � �

Where, the node 3B9 satisfies the association property ���������
with respect to 3 � . The entities in �C� are also ordered ac-
cording to higher similarity values with respect to 3�� . The
domain database of the graph

�D� �#0 ��1 � , denoted as
��� ��� , is a database of all graph node domains � � .

5

4.4 Similarity measure between two components

The notion of component association between two
components

� � and
� � , comp-assoc � � � � � � � , has been

used to define a software evaluation model based on the
component association views [16]. In the current paper, we
use the notion of component association to define a new
similarity metric, namely mutual-assoc � � � � � � � , between
two components. For the continuity of the discussion, the
definition of comp-assoc � � ��� � � � has been repeated here.

Component
A system component is a named grouping of the system
entities, such as functions, types, and variables, with the
relation contains or defines to those entities. A component
can also be viewed as a composite entity. Each system
entity is contained in only one component. Each user
defined entity in an include file (i.e., global variable or
aggregate type) is contained in one component based on
the frequency of usage by the functions in that component.
A component can be a file, a module of entities, or a
subsystem of files where the files are replaced by their
contained entities.

Component association
A component

� � represents a subgraph
�����8� �
0 ��� �21 ��� �

of the system graph
� � �#0 ��1 � . The domain of a compo-

nent
� � , denoted as � ���

, is a collection of the system enti-
ties that exist in the domain of each entity 3 � , where 3 � is
contained in component

� � , Formally:

� ��� �
 � 3 �"�23<9#�!� � 0 ��� ��� � 3 ��0 0 ��� ? 3<9.0>0 �
In our discussion, we use file as component and func-

tion as entity, where each file contains (defines) a number of
functions. In Figure 5(a), the domain of each entity (func-
tion) in file �%� is shown as the area in a closed curve. The
domain of file ��� (i.e., � ���

) is represented as the whole
area covered by all closed curves.

The component association of component
� � onto com-

ponent
� � , denoted as comp-assoc � � ��� � � � , is defined as the

degree of dependency of the entities in
� � onto the entities

in
� � . Formally:

comp-assoc � � � � � � �����
	 �
��� � � ������	��� � ��������� � ������� �
	 � �� � � �

Where, ��� � � � � � � is the set of entities in the intersection of
the “domain of component

� � ” (i.e., � ���
) and “component� � ”; ��������� �=������� �
	 � � is the sum of all similarity values

for the 6���� entity in ��� � ��� � � � 4 with respect to entities in� � ; and
� � � � is the number of entities in component

� � .
4Note that each node in D � �"!$#���%'& has different association degrees, if

it is a member of different overlapped domains, as in Figure 5(a).

jD

F1

F5

F5

F2

F6

D(F2, F5)

D(F5, F2)
Shaded area:

represents the
functions in
file 1

This area

Each curve is a domain of a function in fle 5.

F4

F6

F5

F4

F2 F3 F3F1

F4

F6

F3F2F1

(c) Mutual component association of file 5 and file 2.

(a) Component association of file 5 to file 2. (b) Component association of file 2 to file 5.

Figure 5. A system of six files representing
the component association and mutual asso-
ciation of files 2 and 5.

Therefore, comp-assoc � � � � � � � is the average of the total
similarity values of an entity in ��� � � � � � � . In Figure 5(a)
the overlapped part ��� �)(#�$� � � is shown.

Similarity measure
Having defined the directed relation comp-assoc � � � � � � � ,
we define the similarity measure between two components� � and

� � as the mutual association of components� � and
� � , denoted as mutual-assoc(

� � � � �). The mu-
tual association is defined as a weighted average of the
component associations between those two components, as:

mutual-assoc � � � � � � ���
* 7,+2� � comp-assoc � � � � � � � � * 7 � 4 � comp- assoc � � � � � � �* 7,+
� � * 7 � 4

Where,
* 7,+2� and

* 7 � 4 are the weights for the larger
and smaller component association degrees, respectively.
We use

* 7,+
� � and
* 7 � 4 � � to give more value to

the larger component association. The unit for both comp-
assoc � � � � � � � and mutual-assoc � � � � � � � is “association-
degree per entity” (abbreviated as APE). Figure 5 illustrates
the notions of component association and mutual compo-
nent association between two files 2 and 5.

5 Supervised clustering scenario

We propose a supervised clustering technique based on
main seeds that correspond to a decomposition of the whole
search space into sub-spaces. The clustering process is in-
cremental and consists of 3 iterations, each corresponds to

6

generating a new cluster using an optimization search algo-
rithm. The incremental characteristic of the technique does
not give privilege to the earlier generated clusters: i) there is
no commitment on the early clusters until the whole set of
clusters is generated; and ii) each succeeding cluster is al-
lowed to overlap with the previous clusters. Therefore, each
cluster has an equal chance to possess a given file in the
system. However, based on the previous clusters, a main-
seed selection algorithm provides a ranking list of top-m
sub-spaces to be selected for the next clustering iteration.

The role of the user in the clustering process is flexi-
ble. The minimum interaction with the tool is to select the
most appropriate sub-space for the next clustering iteration
from the ranking list of the sub-spaces. The role of the
user increases by defining fixed files (known as seeds) in the
clusters which imposes the algorithm to restrict the search
space. Finally, the user may completely bypass one itera-
tion by defining a whole cluster as a manual cluster. Figure
6 demonstrates a two-phase scenario for the clustering pro-
cess as following:

In the clustering phase (loop-1 in Figure 6), the system
of files are grouped into subsystems based on the similar-
ity metric mutual-assoc � � ��� � � � . This phase is further dis-
cussed in the next section.

In the distribution phase (loop-2 in Figure 6), the user
controls the clustering process. In this phase the tool ex-
amines all those files that have not been yet assigned to any
cluster (known as rest-of-system), against the existing clus-
ters. The result is a list of the files in the rest-of-system
and their overall closeness to one or more clusters, which is
shown to the user. The list is ordered according to the higher
closeness values so that the user can easily view and choose
a group of files from the top of the list and then the tool
distributes them among the clusters. After each distribution
operation, a new list of rest-of-system is generated for in-
spection. The user stops this distributiononce the files in the
rest-of-system show trivial closeness to any of the clusters.
At this point the rest-of-system itself constitutes a separate
manual cluster. The last operation in distribution phase is
the relocation of files among the clusters. This operation
allows the user to overrule the tool’s decision on clustering,
in order to adjust the sizes of the clusters, improve the av-
erage closeness of the clusters, or balance the import/export
of entities among the clusters. The user may select the files
to relocate according to the knowledge obtained from the
system documents or from a low overall closeness of one or
more files in a cluster to the other files in that cluster.

The result of each iteration, along with additional metrics
about the properties of the results, are presented to the user
in the forms of HTML pages and graph representations to
be viewed by graph visualization tools (block 4 in Figure
6).

Tool process

Flow of operation

User interaction

Alternative path

START

Loop-1

2

Cluster

7

3

Manual cluster

1

Clustering phase

Main-seed
suggestion

Distribution phase

Clustering
operation

6

definition

specification

Loop-2

4

& relocation
Distribution

Decision on

Show clusters
& evaluation

END

5

file distribution
or relocation

between clusters

Figure 6. Scenario for supervised incremental
clustering.

6 Clustering phase

In order to address the search complexity of clustering
components into subsystems, we restrict the search space
for each cluster by decomposing the whole search space into
sub-spaces and collect them into a space database � � � ��� .

The generation of sub-spaces in � � � ��� is similar to the
generation of domains in ��� ��� , as discussed in section
4.3. The sub-spaces are generated by applying the Apri-
ori algorithm on the database of baskets and items in Figure
3, where the baskets are files and the items are functions,
types, and variables that are called/used by the functions in-
side the corresponding files.

Each sub-space consists of loosely associated files which
qualifies them as a smaller search space for the clustering
algorithm. The characteristics of the sub-spaces in � � � ���
are as follows:

� The neighboring sub-spaces in � � � ��� are highly over-
lapped, therefore, finding an optimal set of sub-spaces
as the basis for the clusters requires further analysis of
the sub-spaces.

� The files in a sub-space are already ranked according to
their association with the main-node of the sub-space.
This allows us to select the highly associated files by
simply truncating a sub-space to a certain size 6 . A
truncated sub-space refers to the first 6 files of that
sub-space and is denoted as “t-space”. We truncate all
sub-spaces to a particular size 6 and represent them as
a group of overlapping subsystems whose sizes are at
most 6 . However, a truncated sub-space only guaran-
tees the high association of each file to the main-node
not between two non main-node files.

The t-spaces are analyzed in order to find qualified sub-
spaces for the clustering operation.

7

6.1 Main-seed selection

The main-seed selection algorithm resembles the actual
clustering algorithm, assuming that a t-space is an actual
cluster (subsystem). This assumption is not unrealistic
since the files in sub-spaces are already ranked according
to their association values with the sub-space’s main-node.
This allows us to analyze individual sub-spaces in the
� � � ��� according to the criteria which are formulated as a
score function. The score function assigns a single score to
each sub-space and provides a ranking of top-m sub-spaces
to the user to select from. The selection algorithm computes
t-spaces which are large, highly correlated, and sufficiently
distinct using the following score function:

������6�	 t-space =
(AvgAssoc * k1) + (Size * k2) - (Overlap * k3)

Where, AvgAssoc and size are the average association de-
grees and size of the t-space; and overlap is the ratio of the
total similarity degrees of the shared files5, to the total sim-
ilarity degrees of the files in the t-space. This ratio demon-
strates the degree of overlap between the already clustered
subsystems and the candidate t-spaces. The first t-space is
freely selected since the overlap ratio is zero. However, at
each subsequent iteration the overlap ratio increases. The
coefficients

* � to
* � are empirically defined by the user

so that the terms of the score function yield almost compa-
rable numbers on average. These coefficients are adjustable
rather independently.

The seed-selection algorithm scans the whole database
� � � ��� � times to produce the top-m main-seeds for the
user to select from.

6.2 Clustering operation

We use a form of branch and bound search algorithm
with bounded path queue which produces a sub-optimal so-
lution at each clustering iteration, Figure 7(a).

In a branch and bound algorithm a search tree with in-
complete paths is built and the paths are stored in a sorted
path queue. At each step, the algorithm expands an incom-
plete path with the highest score from the head of the path
queue. Upon expansion, new incomplete paths are gener-
ated, added to the previous paths in the queue, and the queue
is sorted.

The procedure continues until a complete path which is
an optimal solution is found. A valuation function allocates
a score to each node of the branch and bound search tree
to guide the search process. This general approach in most
cases restricts the search space to a small subset of all tree

5Shared files between the candidate t-space and the previously selected
t-spaces or the accumulated clusters.

1

3

5

6

4

2 2 3

4

5

6

from queue

path in queue

1

path deleted

7

8

Depth

Incomplete path:
Complete path:

Root

expanding paths
Sequence of
1, 2, 3, ... :

(a) The existing and deleted paths in the branch and bound path queue.

Max

Min

determined by
score ratio

(b) The number of paths in the search queue are bounded.

in queue
Number of paths

Time

Figure 7. Branch and bound search tree with
bounded path queue.

paths, preventing the exponential complexity inherent to the
searching problems.

A new cluster is specified by its main-seed 3 � which
corresponds to a sub-space � � from the database � � � ��� .
The sub-space � � determines all potential files that can be
clustered in a subsystem. The search tree has a root which
corresponds to the main-seed6 of the subsystem and zero
or more nodes that correspond to the seeds which are fixed
files in a subsystem. At each depth of the tree, a new file is
selected and added to the group of files in the subsystem.
In Figure 7(a), a thick line from the root of the tree to a leaf
node represents a complete path which produces an optimal
solution.

Bounded path-queue heuristic
During the search process in a system with large sub-spaces,
the branch and bound algorithm accumulates a large num-
ber of incomplete paths in the path queue which make the
process of storing and sorting the paths in the queue as a
bottleneck for the algorithm. Since the path queue is sorted,
all of the eligible paths to be expanded are located toward
the head of the queue with high scores. Therefore, most
of the paths with low scores at the end of a large path
queue will never get a chance to be expanded, and remain
at the bottom of the path queue until the end of a successful

6Here, we assume that each subsystem has a single main-seed, however
a subsystem can have more than one main-seed.

8

search. This property allows us to restrict the size of the
path queue within a reasonable range (e.g., multiple hun-
dreds of paths) and still get the same result as we had kept
all the paths in the path queue. Figure 7(b) illustrates the os-
cillation of the number of paths in the path queue. Once the
size of queue passes the maximum threshold, it is truncated
to the minimum size. However, we only delete the paths
from the bottom of the path queue whose scores are much
less than those on the head of the queue. Therefore, when
we collect paths whose scores are close to each other, the
size of queue is kept around the maximum size, as shown in
Figure 7(b). As a result this bounded path-queue heuristic
yields a sub-optimal version of the branch and bound search
algorithm in trade of increasing the performance. In prac-
tice, for a medium size system we use a (max, min) queue
size threshold of (400, 200) with ratio

7
+
� � �������7 � 4 � ������� � �4 � .
In Figure 7(a), an example of a sub-optimal search with

the sequence of path expansion is shown. In this example,
each incomplete path is expanded with three paths and the
(max, min) threshold is (16, 10).

Score evaluation
We use group average similarity7 � �
	 �#	"�!� � , which deter-
mines the average closeness of an entity 	 to a group of
entities in a cluster � . The branch and bound score func-
tion ������6�	���� �
	�� � � evaluates the score of a candidate entity
	 against the cluster � using the group average similarity� �
	 and an estimation of the remaining distance to the des-
tination, as:

������6�	���� �
	��
� ��� � �
	 �
	��
� � � ��� � 6 � � � �
�
�

Where, 6 is an empirical coefficient,
� � � is the size of incom-

plete cluster, and � is the size of complete cluster.
The rational for such a score function is as follows: the

value of the group average similarity
� �
	 is decreasing by

accumulating more entities in the cluster � . Therefore, the
search algorithm tends to explore most of the short incom-
plete paths in the search tree (i.e., smaller clusters), hence,
it is reduced to a breath first search algorithm. However,
the second part of score function, i.e., 6 � 	 � 	
 favors the
longer incomplete paths to expand. The combination of
these two cases with a proper empirical coefficient 6 would
give chance to the longer incomplete paths to be expanded.

7 Experiments

In this section, the application of the proposed clustering
technique on decomposing two software systems CLIPS 4.3
and Xfig.3.2.3 are presented. We have implemented a re-
verse engineering tool (Alborz [15]), as a user assistant, to

7Jain provides the results of a number of studies on comparing different
group similarity techniques [6].

(a) Result of recovery for first cluster (subsystem S1).

(b) The top-4 main-seeds to be selected for second cluster.

Figure 8. Main-seed selection for CLIPS.

recover the architecture of a software system as cohesive
components (i.e., subsystems or modules). The Alborz tool
has been built using the Refine re-engineering toolkit [14]
and uses the built-in parsers to parse the software systems.
The experiments have been performed on a Sun Ultra 10
platform.

7.1 CLIPS system

In the first experiment, we apply the proposed tech-
nique to recover the architecture of the CLIPS system. The
CLIPS system provides an environment for building rule
based expert systems. Our experimented results are evalu-
ated against the CLIPS architecture manual [20] published
by the NASA Software Technology Support Center. The
CLIPS 4.3 consists of 40 KLOC, 46 source files, 736 func-

9

1) generate.c **
1) build.c

1) variable.c

3) retract.c
3) drive.c
3) factmngr.c

3) match.c
x) deffacts.c

x) rulecomp.c !!
x) rulemngr.c !!
2) symbol.c !!
2) memory.c !!

1) expressn.c **
1) rulepars.c
1) lhsparse.c
3) engine.c
1) commline.c !!
1) analysis.c !!
1) scanner.c !!
2) router.c !!
1) reorder.c !!

4) math.c **

4) multivar.c
4) sysio.c
4) syssecnd.c

4) syspred.c !!

5) intrbrws.c
5) entrexec.c
5) intrfile.c

1) evaluatn.c

4) sysprime.c !!

3) utility.c **
x) textpro.c !!
2) sysdep.c !!

x) main.c
x) my-methods3.c

x) methodsFile.c
x) my_source3.c
x) my_source4.c

x) compile.c

6) object.c **
6) method.c
6) bc.c !!
x) NeXTcall.c !!

Distributed: !!
Main-seed: **

S2S1 S4

S5

S3

S6 (Manual)

CLIPS

document

Sub-
systems
from

x: Other modules or not-reported

1: Parsing modules: 11 files

3: Inference engine: 7 files

6: Object modules: 3 files
5: Rules interface: 3 files

2: System function modules: 4 files

4: Rule manipulation: 6 files

Recovered RecallRelated CLIPS subsystemsNo.
files

S1

S3
S5

subsystem

2 & 3

4

S2
10
9

12
78%

6
4 & 5

1

100%
100%90%

75%

50% 54%

Prec.

64%

(a) Recovered subsysems of the CLIPS system

(b) Accuracy of the recovered subsystems

Figure 9. The result of CLIPS decomposition.

tions, 161 global variables, and 54 aggregate types. We de-
compose the CLIPS system files into 6 subsystems in ac-
cordance with the supervised clustering scenario in section
5. The coefficient values for the CLIPS system include: t-
space size = 10,

* � � � 4 �:� * � �#4 � � * � � � � 4 � for
������6�	 t-space function, and 6 � (,4 � for ������6�	 ��� function.

Figure 8(a) corresponds to the final result of the clus-
tering scenario consisting of both analysis and distribution
phases, where only the first cluster (subsystem S1) is shown.
The subsystem S1 consists of 12 files each in a separate line,
including a main-seed file generate.c (marked with “**”)
and 4 distributed files (marked with “!!”). Each file has a
hypertext link to its source code, and is annotated with the
number of functions in the file (e.g., f:20 means 20 func-
tions), and the average similarity value with other files in
the subsystem (e.g, 40.39 APE in the first line). The im-
port/export parts illustrate a summary of the function inter-
action with other subsystems, as the “subsystems and in-
terconnections” representation of the decomposed system.
The user can switch to the detailed version of the subsys-
tem interaction to view each individual entity with hypertext
links to source code.

Figure 8(b) presents the score ranking of top-4 sub-
spaces and their corresponding main-seeds, generated by
the main-seed selection algorithm after clustering subsys-
tem S1. Each entry includes the information about a trun-

Figure 10. The rest of system files in CLIPS.

cated sub-space (t-space) such as: average of association
to the main-seed; size of both sub-space and t-space; num-
ber of overlapped entities; and its overall score. Therefore,
the user obtains enough information about the eligible sub-
spaces to select the best main-seed for the second clustering
iteration.

Figure 9 presents a detailed result of the CLIPS system
decomposition, and a measure of accuracy based on Pre-
cision and Recall metrics, compared to the CLIPS system
documents. The result of clustering is very promising.

Figure 10 demonstrates the files in the rest-of-system af-
ter the clustering phase of the clustering scenario. Each line
corresponds to a file and is annotated with the closeness val-
ues to three different subsystems. The user can easily se-
lect a group of files which indicate high closeness values to
some subsystem and let the tool distribute them among the
clustered subsystems. The distribution is performed in se-
quence, that is after each allocation of a single file to a sub-
system the closeness values are reassessed for the next file.
The result of distribution is shown as files that are marked
with “!!” in Figure 9. The overall computation time for
both main-seed selection and incremental clustering in this
experiment is 10 seconds

7.2 Xfig system

The system in the second experiment is the Xfig draw-
ing tool which runs under X-Windows. The Xfig.3.2.3 con-
sists of 75 KLOC of source code written in C, distributed
over 100 source files, 75 include files, 1662 functions, 1356
global variables, and 37 aggregate types. According to the
maintainers of the Xfig system, Xfig lacks any documen-
tation on the structure or implementation, and only usage
documents are provided. However, a consistent naming
convention is used throughout the system files, such as:

� � files relate to drawing shapes; 	 � files relate to edit-

10

S1

RS

79

24

S2

S3

112

128 51
42

48 25

S3: 27 files

S1: 24 files S2: 21 files

Rest of System: 26 files

Figure 11. Decomposition of the Xfig drawing
system and the function interaction diagram.

ing shapes; � � files are utilities for drawing and editing
shapes;

� � files have file-related functions; and � � files
have X-window calls in them to do all of the window-related
functions.

These naming conventions provide a logical structure for
the system which does not necessary relate to the cohesive
clustering of the files into subsystems. Therefore, the gen-
erated clusters may overlap with two or more logical sub-
systems. For example, three groups of files drawing shapes,
editing shapes, and their utilities are highly related through
a large number of global variables, therefore, a low-coupled
decomposition of these three groups is almost impossible.

Figure 11 presents the decomposition of the Xfig system
into four equally sized subsystems. Each line corresponds
to a file along with the number of functions and overall sim-
ilarity to other files in the subsystem. Subsystems S1 corre-
sponds to the files for editing shapes and their utilities with� ���

Precision and �,� � Recall. Subsystem S2 corresponds
to the X-window related files with � ��� Precision and < ���
Recall. Subsystem S3 contains � ��� of the drawing shapes;
and the rest of system contains the files that present trivial
closeness to either of the subsystems. A subsystems and in-
terconnections diagram in Figure 11 illustrates the function
interaction among the subsystems with high interaction be-
tween S1 and S3. The overall computation time for both
main-seed selection and incremental clustering in this ex-
periment is 50 seconds

8 Conclusion

In this paper, we defined two similarity metrics based
on an extension to the conventional coupling and cohesion
metrics. The idea is based on providing a metric for measur-
ing the interaction and correlation among the system com-
ponents at the architectural level of a system. In this ap-
proach, the software system is represented as a graph. The
data mining technique Apriori extracts the maximum asso-
ciation measures among the system entities. A domain anal-
ysis technique measures the component associations which
are then represented as a new similarity metric mutual com-
ponent association between components. Experiments with
two middle size systems and the accuracy evaluation using
Precision and Recall indicate that the proposed technique
provides promising results on decomposing a monolithic
software system into highly cohesive components. Finally,
the user incorporates the knowledge about the system do-
main and documents into the clustering process.

References

[1] R. Agrawal and R. Srikant. Fast algorithm for mining
association rules. In Proceedings of the 20th Interna-

11

tional Conference on Very Large Databases, Santiago,
Chile, 1994.

[2] N. Anquetil and T. C. Lethbridge. Experiments with
clustering as a software remodularization. In Proceed-
ings of the Sixth Working Conference on Reverse En-
gineering, pages 235–255, 1999.

[3] J. M. Bieman and L. M. Ott. Measuring functional co-
hesion. IEEE Transactions on Software Engineering,
20(8):644–657, August 1994.

[4] J. Davey and E. Burd. Evaluating the suitabilityof data
clustering for software remodularisation. In Proceed-
ings of the Seventh Working Conference on Reverse
Engineering, pages 268–276, 2000.

[5] D. H. Hutchens and V. R. Basili. System structure
analysis: Clustering with data bindings. IEEE Trans-
actions on Software Engineering, SE-11(8):749–757,
August 1985.

[6] A. K. Jain. Algorithms for Clustering Data. Prentice
Hall, Englewood Cliffs, N.J., 1988.

[7] R. Koschke. An incremental semi-automatic method
for component recovery. In Proceedings of the Sixth
Working Conference on Reverse Engineering, pages
256–267, October 1999.

[8] T. Kunz and J. P. Black. Using automatic process
clustering for design recovery and distributed debug-
ging. IEEE Transactions on Software Engineering,
21(6):515–527, June 1995.

[9] C. Lindig and G. Snelting. Assessing modular struc-
ture of legacy code based on mathematical concept
analysis. In Proceedings of the 19th International
Conference on Software Engineering, pages 349–359,
1997.

[10] S. Mancoridis, B. Mitchell, C. Rorres, Y. Chen, and
E. Gansner. Using automatic clustering to produce
high-level system organizations of source code. In
Proceedings of IWPC’98, pages 45–53, Ischia, Italy,
1998.

[11] V. B. Misic. Coherence equals cohesion-or does it?
In Proceedings of the Seventh Conference on Asia-
Pacific Software Engineering, pages 465–469, De-
cember 2000.

[12] S. Patel, W. Chu, and R. Baxter. A measure for com-
posite module cohesion. In International Conference
on Software Engineering, pages 38–48, 1992.

[13] R. S. Pressman. Software Engineering, A Practitioner
Approach. McGraw-Hill, third edition, 1992.

[14] Reasoning Systems Inc., Palo Alto, CA. Refine User’s
Guide, version 3.0 edition, May 1990.

[15] K. Sartipi. Alborz: A query-based tool for software
architecture recovery. In Proceedings of the IEEE
International Workshop on Program Comprehension,
pages 115–116, Toronto, Canada, May 2001.

[16] K. Sartipi. A software evaluation model using com-
ponent association views. In Proceedings of the IEEE
International Workshop on Program Comprehension,
pages 259–268, Toronto, Canada, May 2001.

[17] K. Sartipi and K. Kontogiannis. A graph pattern
matching approach to software architecture recov-
ery. In Proceedings of the IEEE International Con-
ference on Software Maintenance (ICSM 2001), Flo-
rence, Italy, November 2001. (to appear).

[18] K. Sartipi, K. Kontogiannis, and F. Mavaddat. Archi-
tectural design recovery using data mining techniques.
In Proceedings of IEEE CSMR 2000, pages 129–139,
Zurich, Switzerland, Feb 29 - March 3 2000.

[19] K. Sartipi, K. Kontogiannis, and F. Mavaddat. A pat-
tern matching framework for software architecture re-
covery and restructuring. In Proceedings of IEEE
IWPC 2000, pages 37–47, Limerick, Ireland, June 10-
11 2000.

[20] A. I. Section. CLIPS Architectural Manual Version
4.3. Lyndon B. Johnson Space Center, jsc-23047 edi-
tion, May 1989.

[21] M. Siff and T. Reps. Identifying modules via concept
analysis. IEEE Transactions on Software Engineering,
25(6):749–768, Nov./Dec. 1999.

[22] G. Snelting. Software reengineering based on concept
lattices. In Proceedings of the European Conference
on Software Maintenance and Reengineering (CSMR
2000), pages 1–8, Zurich, Switzerland, March 2000.

[23] V. Tzerpos and R. C. Holt. Software botryology: Au-
tomatic clustering of software systems. In Proceed-
ings of the International Workshop on Large-Scale
Software Composition, Vienna, August 1998.

[24] V. Tzerpos and R. C. Holt. Acdc: An algorithm for
comprehension-driven clustering. In Proceedings of
the Seventh Working Conference on Reverse Engineer-
ing, pages 258–267, 2000.

[25] T. A. Wiggerts. Using clustering algorithms in legacy
systems modularization. In Proceedings of the Fourth
Working Conference on Reverse Engineering, pages
33–43. IEEE Computer Society Press, October 1997.

12

