
Pattern-based Software Architecture Recovery
�

Kamran Sartipi
�

Kostas Kontogiannis
�

University of Waterloo
School of Computer Science

�
and,

Dept. of Electrical & Computer Engineering
�

Waterloo, ON. N2L 3G1, Canada�
ksartipi, kostas � @swen.uwaterloo.ca

Abstract

This paper presents a technique for recovering the high
level design of legacy software systems based on pattern
matching and user defined architectural patterns. Architec-
tural patterns are represented using a description language
that is mapped to an attributed relational graph and al-
lows to specify the legacy system components and their data
and control flow interactions. Such pattern descriptions are
viewed as queries that are applied against an entity-relation
graph that represents information extracted from the source
code of the software system. A multi-phase ��� search algo-
rithm with a bounded path-queue mechanism controls the
matching process of the two graphs by which, the query is
satisfied and its variables are instantiated. An association
based scoring mechanism is used to rank the alternative re-
sults generated by the matching process. Experimental re-
sults of applying the technique on the Xfig system are also
presented.

1 Introduction

Legacy software systems are mission critical, large, and
complex systems that are operational for approximately 10
to 15 years [17]. Due to prolonged maintenance such legacy
systems are difficult to maintain, evolve, or integrate and
in most cases their architectural design deviates from the
original design. In this context, architectural recovery is
a key activity in supporting maintenance tasks such as re-
engineering, objectification, or restructuring.

In a nutshell, the approaches to software architectural re-
covery can be classified as clustering-based techniques and
pattern-based techniques. The clustering-based techniques
generate architectural components by gradually grouping
�
This work was funded by IBM Canada Ltd. Laboratory - Center for

AdvancedStudies (Toronto) and the National Research Council of Canada.

the related system entities using a similarity measure [12,
18, 4]. On the other hand, the pattern-based techniques first
compose a high-level mental model of the system architec-
ture (also known as conceptual architecture or architectural
pattern) using a modeling means such as a query language
[11, 10, 14, 9, 8] or a block diagram [7, 13], and then a pat-
tern matching engine searches to identify an instance of the
architectural pattern in the software system.

The motivation for this research stems from the lack of
a reflective and uniform model for pattern-based software
architectural recovery, whereby the software system, archi-
tectural pattern, and pattern matching process, are all uni-
formly represented using a graph formalism, and the recov-
ered architecture conforms with detailed constraints of the
architectural pattern.

The reverse engineering community has paid particular
attention to the pattern matching approaches since they al-
low the use of domain knowledge and system documents
in composing the pattern, hence provide a user/tool coop-
erative environment for architectural recovery. Moreover,
the software systems are intuitively represented as graphs
and the reverse engineering community is on the verge of
adopting a graph standard for information exchange among
the existing reverse engineering tools [5]. This paper aims
at an approach to software architecture recovery that con-
siders the high-level design of a system as a pattern graph,
and models the recovery process as a graph pattern match-
ing problem that matches such a high-level pattern graph of
the system with an entity-relationship graph representation
of the source-code system entities.

2 Software architecture recovery (definition)

Despite several attempts for automating the architectural
recovery process (i.e., clustering) it is generally accepted
that a fully-automated technique is not feasible. It is

AQL querySoftware System

Graph
generation

analysis

& Similarity matrix

C / Pascal /

pattern
Module-Interconnection

Pattern graph

Architecture

pre-process
Off-line:

Software graph regions

as graph

AST

Software

RSF

On-line:

Data mining

Query
generation

Parsing

(search & evaluation)
Graph matching engine

- System analysis
- Domain & Document
- Decision making

Figure 1. The interactive framework for the proposed pattern-based software architecture recovery.

rather difficult to extract the architecture of a large system
at once, hence, the architectural recovery should be an
incremental process. Software systems usually consist
of some sort of patterns in their design which form the
basis for the recovery process. Most recovery processes
focus on the structural properties of a system, ignoring
the high-level behavior of the system. Finally, the role
of the user is increasingly important in incorporating the
domain knowledge and system documents into the recovery
process. Based on the above discussion, this paper defines
the software architectural recovery problem as:

devising a tractable methodology and the sup-
porting tools for interactively and incrementally
recovering a system’s structure using domain and
system knowledge.

3 Proposed framework

We propose an interactive reverse engineering frame-
work for incremental recovery and evaluation of the archi-
tecture of a software system in the form of cohesive mod-
ules (or subsystems) that comply with the constraints of a
user-defined pattern.

Figure 1 illustrates the different parts of the proposed in-
teractive architectural recovery framework where the thick
arrows signify the processes in the framework; boxes rep-
resent the different forms of information in the framework;
the thin arrows indicate the inputs and output of the graph
matching engine; and the user is the high-level decision
maker that produces a mental model of the architecture and

verifies the result of recovery. The framework consists of
an off-line pre-process phase and an on-line analysis phase.

In this framework, the user defines a graph-based ar-
chitectural pattern of the system modules (subsystems) and
their interactions based on: domain knowledge, system doc-
uments, or tool-provided clustering techniques. In an itera-
tive recovery process, the user constraints the architectural
pattern and the tool provides a decomposition of the sys-
tem entities into modules or subsystems that satisfy the con-
straints. The architectural pattern can be viewed as a graph
of modules and interconnections1, where each module (one
node of graph) represents a group of placeholders for the
system entities (i.e., functions, types, variables) to be in-
stantiated, and each bundle of interconnections (one edge
of graph) between two modules represents data-/control-
dependencies between two groups of placeholders in two
modules. The minimum/maximum sizes and the types of
both placeholders and the interconnections are considered
as free parameters to be decided by the user (respecting the
allowed relation between two entities).

This yet un-instantiated module-interconnection repre-
sentation (can be referred to as conceptual architecture) is
directly defined for the tool, using a proprietary language
that we call Architecture Query Language (AQL). There-
fore, a query in AQL represents a macroscopic graph-form
pattern for a part or the whole of the system architecture to
be recovered. The task of the tool is then to search through
the software system (again represented as a graph of system
entities and relationships) to find an sub-optimal match be-

1Similarly, at the higher level architecture recovery a graph of subsys-
tems (consisting of files or modules) and their interconnections are used.

tween the module-interconnection pattern in the AQL query
and the graph of the system.

3.1 Software system and architectural pattern

In this approach the software system and the architec-
tural pattern are presented using the attributed relational
graph notaion defined in [6]. The software system is repre-
sented by a source-graph

���������	��
�����
, where the nodes

(���) represent files, functions, datatypes, and variables and
the edges (���) represent call and use relationships. The
nodes and edges comply with the specific domain model
defined for architectural analysis [16].

The architectural pattern is represented by an AQL query
that is to be matched against the source-graph

���
. Each

module of the query uses one or more entities as fixed en-
tities to appear in the result of the recovery, namely main-
seed(s) which determine the corresponding search-space to
be searched for the module, and seeds which just appear in
the result without search. In the following a part of an AQL
query, consisting of a subsystem S1 of files and its intercon-
nection links to other subsystems is shown:

BEGIN-AQL
SUBSYSTEM: S1

MAIN-SEEDS: files e edit, e update
IMPORTS:

RESOURCES: rsrc ?IR,
rsrc ?R1(6 .. 10) S2,
rsrc ?R2(12 .. 20) S4

EXPORTS:
RESOURCES: rsrc ?ER,

rsrc ?R3(10 .. 15) S2,
rsrc ?R4(1 .. 5) S3

CONTAINS:
FILES: file $CFI(7 .. 10),

files e edit, e update
RELOCATES: NO:

files e allign, u scale TO: S3
END-AQL

The above AQL fragment is interpreted as: the subsys-
tem S1 which will be instantiated with seven to ten files,
and definitely contains the files e edit and e update (main
seeds), imports minimum six and maximum ten resources
(?R1) from subsystem S2. A similar interpretation holds
for the EXPORTS and CONTAINS sections. The notations
?IR and ?ER in the import and export parts denote uniden-
tified quantities of links between the current subsystem and
any other subsystems in the query that have not been speci-
fied by the architectural pattern, therefore, are not matched
by the matching algorithm.

4 Overview of the graph matching process

In modeling the incremental graph matching approach
for architecture recovery, a number of intermediate graphs
and connector edges are defined. Such intermediate graphs
allow to represent the architectural pattern and input graph
at each iteration of the matching process in terms of their
constituents (i.e., a number of recovered modules and their
import/export links) and consequently formulate them us-
ing recursive graph summation equations. This formulation
provides a valuable means for modeling and implementing
the whole incremental pattern matching process. In this
Section, an overview of the graph pattern matching process
is discussed with reference to the framework of Figure 1
and the matching process of Figure 2.

4.1 Step 1: System representation

The software system is parsed and the source-code en-
tities and data/control dependencies are abstracted accord-
ing to an architectural-level domain model which yields
the entity-relationship source-graph

���
. The source-graph

provides a search-space for the matching process. How-
ever, since even in a medium-size software system the num-
ber of entities and relationships that are generated are pro-
hibitively high, any matching algorithm will be intractable.

To address this problem, the search space is decomposed
using data mining association relation to generate a collec-
tion of sub-spaces, where each sub-space is a sub-graph of
the source-graph

���
, namely a source-region

������ . Each
source-region

������ is distinguished by the main-seed node
��� in that region. In this context, the data mining technique
Apriori [3] is used to discover all groups of system enti-
ties that are related by maximum association, where maxi-
mum association refers to a maximum group of entites that
all share the same relations to another maximum group of
entities. Every node in a source-region is labeled with an
association-based similarity value to the main-seed of the
source-region as a means for the matching process to op-
erate on groups of highly associated entities. The group
of source-regions

������ ’s in the source-graph
���

are stored
in a database and the user selects a source-region from the
database to be matched with the incremental part of the pat-
tern at each matching phase � (��� [1.. No. of modules]).
At file-level analysis the source-region nodes are files func-
tions, datatypes, variables, and at function-level analysis the
source-region nodes are functions, datatypes, and variables.

4.2 Step 2: pattern representation

An abstract pattern of modules-and-interconnections for
the software system is modeled as a query in the pro-
posed Architecture Query Language (AQL). An AQL query

7

2
10

13

11

1

2

9

65

4

9

65

4

9

65

4

1

2 M M

 l 1

1

13

(b) Pattern−graph

(c) Input−graph (d) Matched−graph

Main−seed

The Query−graph generates pattern−graph
(a) Representing an AQL query as a Query−graph.

and input−graph in parts (b) and (c).
6

+

edge
Un−matched

Main−seed

Graph

+ ,

summations

Source−graph
edge

F: (2, 4)

1

F:(2, 3)

use−F : (1,2)

G

2
I

G1
m

G

2
m

G

+ p

R2 +

+

G 2
mr

R2

m mr
G

m
1 +

srm

2
m

(

G
sr
g(2)

G

Phase 1
being matched

n

matched

2,1

n2,2

n2,3

Phase 2

Match+

pr

=

22R =

=

(

(G1

)

prm

+)
)

Module M1

Module M2

AQL query

Figure 2. The graph pattern-matching process iteratively matches a pattern-graph with an input-graph
and yileds a matched-graph as the recovered architecture for the current matching phase.

can be further represented as a query-graph consisting of
composite nodes that are linked through composite edges.
Each composite node is expanded into a pattern-region2� � �� , and each composite edge is expanded into a group
of edge-bundles3 ����� � �� (each edge-bundle is a collection
of edges). The pattern-region and edge-bundles are conse-
quently matched against a source-region

������ (
� ���� is shown

as
� ����	� ��
 where � �� � � � and � is the current matching phase)

and their connector-edges � ��� ���� . The rationale for ex-
panding the composite-edges is to allow every subset of the
nodes in a source module to be connected to every subset of
the nodes in the destination module, according to the con-
straints modeled in the AQL query.

4.3 Step 3: graph matching process

The matching process computes a sub-optimal match
between a pattern-graph

� � � that originates from an AQL
query and an input-graph

���� that originates from the sys-
tem source-graph. The matching is performed in � phases
(� is the number of AQL query modules) with the require-

2a pattern-region ������ is generated with maximum number of nodes in
the correspondingAQL query module � and connect every node in pattern-
region to every other node in pattern-region that are allowed based on the
types of the nodes.

3each edge-bundle connects every node from a recovered module to
one node in the pattern-region � ���� with respect to the direction of the
composite edge. Initially, the first nodes are of the pattern-region are se-
lected as the sink/source nodes, however during the matching process the
common sink/source node of an edge-bundle that is not matched yet can
be redirected to another node without any cost.

ment that the obtained results conform with the constraints
specified by the AQL query.

We use the � � search algorithm that is modified by a
“bounded path-queue heuristic” to compute a sub-optimal
matching cost between the pattern-graph

� � � and input-
graph

���� while the AQL query constraints are not vio-
lated. The search algorithm generates a search-tree that cor-
responds to the recovery of each module � � in AQL query
(Figure 3(a)), that consists of: i) a root node for match-
ing the main-seed � � of the source-region

������ with the first
placeholder-node � ����� in the pattern-region

� � �� ; ii) a num-
ber of non-leaf tree-nodes at different levels of the search-
tree that correspond to different alternative matching of the
placeholders in the pattern-region with nodes in the source-
region; and iii) leaf tree-nodes that correspond to solution
paths where the placeholders have been instantiated and
constrains have been met. At each node of a search-tree the
cost of graph edit operations for matching “a node ��� and
its edges” from the source-region with a “placeholder-node
� ��� � and its edges” from the pattern-region are evaluated and
the search-tree is expanded from a tree-node that has the
minimum cost. Each search-tree has a maximal depth equal
to the number of placeholder-nodes in the pattern-region (or
equivalently to the maximum number of placeholders in the
AQL module � �).

A pattern-graph
� � � by its definition is composed of a

number of smaller patterns (i.e., individual pattern-regions� � �� at different matching phases � . This composition prop-
erty allows to manage the complexity of the matching pro-

Discarded costly node

i,xn Placeholder-node to be matched

Maintained node

(1),(2),(3),(4),(5): Sequence of branching

i,5

n

n

n

n

n

i,1

i,2

i,3

i,4

Main-seed (1)

(3)(5)

(4)

(2)

(a) A* search tree

Search for
module M1

Tree paths

Solution path

(1),(2),(3),(4),(5): Sequence of generating search-trees.

(2) (1) and (4) (3): Backtracking to previous phase.

(2), (4): Search-trees that
failed to produce result

(b) Multi-phase search space and backtracking

path path

P
h

as
e

3
P

h
as

e
1

Complete
Root

Leaf node

Incomplete

(1)

(3) (2)

(4)(5)

P
h

as
e

2

Search for

Search for
module M3

module M2

Level

0
1

2

3

Figure 3. Demonstration of a multi-phase
search strategy using: (a) an � � optimal
search algorithm to match the placeholder-
nodes at each phase and; (b) backtracking
between phases.

cess of a large source-graph by applying it on a region-by-
region basis. In this form, the whole matching process is di-
vided into � incremental phases (as � partial-matchings) so
that the recovery process performs a multi-phase matching.
Each partial-matching at phase � (� ���
���
���
����	�
 �) gener-
ates a search-tree which is a part of the multi-phase search-
space, illustrated in Figure 3(b).

5 Experiments

In this Section the experimental results of the proposed
approach are presented. A comprehensive set of experi-
ments related to the time/space complexity, accuracy, sta-
bility, and quality of the architecture recovery technique has
been presented in [16]. The proposed technique has been
implemented in Alborz [15], a prototype toolkit that aims
to recover the architecture of medium size systems imple-
mented in a procedural language such as C. The input to the
Alborz tool is an information base that corresponds to the
entities and relationships of the software system in the form
of an AST or RSF file. The tool provides the result of the ar-
chitectural recovery into two forms: i) HTML pages for the
recovered components, tool generated metrics, and source
code, to be visualized by a Web browser such as Netscape;

1 2 3 4 5
Aggr. Global

System KLOC files funcs types vars

Xfig 74 98 1662 37 1356
Clips 40 44 736 54 161

Apache 38 42 709 42 95
Bash 44 47 1017 45 365
Elm 35 62 420 19 244

GSview 39 47 469 10 382

Table 1. Source-code statistics of the six an-
alyzed software systems.

and ii) graphs of boxes and arrows to be visualized by the
Rigi tool [1], where the boxes are the system files or the
analyzed components and the arrows are either the resource
interaction (i.e., import/export) between the components or
their association strengths. The association values among
the system files are distributed over a large range of values,
hence they can be classified into several sub-ranges, namely
“strengths of association” consisting of for sub-ranges of
strong, medium, loose, and weak. This classification of val-
ues allows to simplify the visualization of the association
graph of the system components (i.e., files, modules, or sub-
systems).

The experiments are performed on six middle-size in-
dustrial systems, namely: i) Xfig.3.2.3 drawing editor, ii)
Clips.4.20 expert system builder, iii) Apache.1.2.4 http
server; iv) Bash.2.03 Unix shell; v) Elm.2.5.6 Unix mail
system; and vi) Ghostview.3.5.8 postscript file viewer and
navigator. Table 1 presents the source-code related charac-
teristics of the experimentation suite.

The hardware platform for the experiments consists of
a Sun Ultra 10 with 440MHZ CPU, 256M memory, and
512M swap disk. The experiments are performed in a
single-user load environment.

5.1 Architecture recovery of Xfig

The Xfig system [2] lacks any documentation on its
structure and only the user manual exists. However, a con-
sistent naming convention is used throughout the system
files which can be used as an aid for inferring its structure.
Figure 4(a) illustrates the generated architectural pattern of
the Xfig system with four abstract subsystems and corre-
sponding link constraints. During the incremental and iter-
ative recovery process this pattern yields the recovered ar-
chitecture in Figure 4(b) where the size constraints for both
the subsystems and links have been satisfied.

Figure 4(c) and (e) illustrate the file association graph
feature of the proposed framework for viewing the Xfig re-

matching
Pattern

(c) Final recovery of Xfig system:

merged into subsystem S1-S4
the subsystems S1 and S4 are

Recovered files + Distributed files

(b) Recovered architecture

No. of

(d) Association links among the

resulting subsystems in part (b).

R
1(

13
0)

R
2(

10
0)

R
4(

10
)

R3(
66

)

 668 funcs 598 funcs
23 + 14 files 17 + 6 files

9 + 1 files
 54 funcs 327 funcs

13 + 7 files

files

X-windowing

S1- S4

rest-of-system

S5

f_readtif

S3

e_editu_drag u_elastic

(a) Architectural pattern using AQL query

 utility &

e_scale

S2

?
R

4(
0.

.1
0)

?R3(
40

..1
00

)
?

R
2(

40
..1

00
)

?
R

1(
50

..1
50

)

u_drag
u_elastic

e_scale

e_edit

f_readtif

13 Phs 10 Phs

20 Phs25 Phs

S2

37

subsystems
No. of
files

(f) Arcitectural recovery evalution

Precision RecallXfig subsystems
Recovered

28

39%
31% editing &

S1-S4

44%

utility &
editing &

(e) Adding all association links to part (b)

S5

47 81%

S3

file manipulation

rest-of-sys

10

78% 64%

16

45%

8

65%37

23

20

70%

63%

drawing

 No. of Placeholders

5 zero size files

2) utility: 18 files
3) drawing: 10 files

S1-S4

100%

Xfig subsystems:

main-seeds

5) X-windowing: 28 files
4) file manipulation: 16 files

S3

1) editing: 19 files

S1-S4

S3

S2

S5

S2

S5

Figure 4. (a) The architectural pattern of the Xfig system where the subsystems S1 and S4 have been
merged. (b) The recovered architecture where the link constraints have been satisfied. (c) and (d)
Graph visualization of the recovered subsystems for the Xfig system using the file association graph
and subsystem association graph with “strong” and “medium” association strengths. (e) Viewing
all association link strengths. (f) Architectural evaluation using “Precision” and “Recall” metrics.

covered architecture. Figure 4(c) illustrates the result of
the recovery process (only the strong and medium associ-
ation links are shown) where the highly associated files are
grouped into subsystem S1-S4 and the association among
the subsystems are limited. Figures 4 (e) illustrates the in-
clusion of the loose and weak association links to Figure
4(b). Figure 4(d) illustrates the association links among the
recovered subsystems as a simplified view of the other fig-
ures. The subsystem S1-S4 has high association with sub-
system S3 but low association with subsystems S2 and S5
as it was aimed for. Also in Figure 4(d) the lines across the
boxes for the subsystems S1-S4, S2, and S3 indicate high
intra-subsystem association that can be interpreted as the
recovery of high cohesive subsystems. Figure 4(f) presents
the accuracy of the Xfig recovery process in terms of the
Precision and Recall metrics. The subsystem S1-S4 recov-
ers all the drawing files and together with S3 recover almost
all the editing and utility files. S2 is allocated to windowing
files and S5 recovers file-manipulation files. The obtained
Precision and Recall values indicate the accuracy for the
proposed pattern matching technique.

6 Conclusion

This paper contributes to the reverse engineering re-
search area by providing an interactive framework for ar-
chitectural recovery, an incremental graph pattern matching
model of the recovery process, and a prototype toolkit to
support the proposed methodology. The proposed frame-
work is based on techniques from the areas of data mining,
approximate graph matching, clustering, and programming
language design.

References

[1] Rigi, URL = http://www.rigi.csc.uvic.ca/rigi/rigiindex.html.

[2] Xfig User Manual, URL =
http://www.xfig.org/userman/.

[3] R. Agrawal and R. Srikant. Fast algorithms for min-
ing association rules. In Proceedings of the 20th Inter-
national Conference on Very Large Databases, pages
487–499, 1994.

[4] N. Anquetil and T. C. Lethbridge. Experiments with
clustering as a software remodularization. In Proceed-
ings of the Sixth Working Conference on Reverse En-
gineering, pages 235–255, 1999.

[5] Bell, IBM. Workgroup on Standard Exchange Format
(WoSEF), Limerick, Ireland, June 06 2000.

[6] M. A. Eshera and K. S. Fu. A similarity measure
between attributed relational graphs for image anal-
ysis. In Seventh International Conference on Pattern
Recognition, pages 75–77, 1984.

[7] P. Finnigan, R. Holt, I. Kalas, S. Kerr, K. Kontogian-
nis, et al. The software bookshelf. IBM Systems Jour-
nal, 36(4):564–593, November 1997.

[8] R. Fiutem, E. Merlo, G. Antoniol, and P. Tonella. Un-
derstanding the architecture of software systems. In
Proceedings of the 4th Workshop on Program Com-
prehension, pages 187–196, 1996.

[9] D. R. Harris, H. B. Reubenstein, and A. S. Yeh. Re-
verse engineering to the architectural level. In Pro-
ceedings of the 17th ICSE, pages 186–195, 1995.

[10] R. Kazman and M. Burth. Assessing architectural
complexity. In Proceedings of the CSMR, pages 104–
112, 1998.

[11] R. Kazman and S. J. Carriere. Playing detective:
Reconstruction software architecture from available
evidence. Technical Report CMU/SEI-97-TR-010,
Carnegie Mellon University, 1997.

[12] A. Lakhotia. A unified framework for expressing soft-
ware subsystem classification techniques. Journal of
Systems and Software, 36(3):211–231, 1997.

[13] H. A. Muller, M. Orgun, et al. A reverse-engineering
approach to subsystem structure identification. Soft-
ware Maintenance: Research and Practice, 5:181–
204, 1993.

[14] G. C. Murphy, D. Notkin, and K. Sullivan. Software
reflexion model: Bridging the gap between source and
higher-level models. In In proceedings of the 3rd ACM
SIGSOFT SFSE, pages 18–28, 1995.

[15] K. Sartipi. Alborz: A query-based tool for software
architecture recovery. In Proceedings of the IEEE
International Workshop on Program Comprehension
(IWPC’01), pages 115–116, Toronto, Canada, May
2001.

[16] K. Sartipi. Software Architecture Recovery based
on Pattern Matching. PhD thesis, School of Com-
puter Science, University of Waterloo, Waterloo, ON,
Canada, 2003.

[17] E. Wallmuller. Software Quality Assurance: A Practi-
cal Approach. Prentice Hall, New York, 1994.

[18] T. A. Wiggerts. Using clustering algorithms in legacy
systems modularization. In Proceedings of the Fourth
Working Conference on Reverse Engineering, pages
33–43, 1997.

