
Application of Execution Pattern Mining and Concept Lattice Analysis on
Software Structure Evaluation

Kamran Sartipi and Hossein Safyallah
Dept. Computing and Software, McMaster University

Hamilton, ON, L8S 4K1, Canada
{sartipi, safyalh}@mcmaster.ca

Abstract

Software maintenance activities for producing a feature-
rich system tend to impair the software’s structure into an
unshaped and cost-prone legacy system. Thus, it is desir-
able to keep track and measure the impacts of the newly
added features on the structure of the software system. The
proposed technique in this paper is based on extracting fre-
quent patterns in the execution traces of a software system
using a pattern discovery technique. The patterns represent
functionalities that correspond to the feature specific sce-
narios. In a further step, the generated execution patterns
are distributed on a concept lattice to separate feature spe-
cific patterns from commonly used patterns. The proposed
technique allows for assigning software features onto the
software system modules and provides a means for assess-
ing the degree of functionality scattering among the system
modules. Consequently, we measure the impact of individ-
ual features on the structure of the system. A case study on
the Unix Xfig drawing tool is used to present the accuracy
of the approach.

KEYWORDS: Software Maintenance; Dynamic Analy-
sis; Execution Pattern Mining; Concept Lattice; Feature.

1. Introduction

Software systems are continuously evolving throughout
their life time from early development to their maintenance
and retirement. During the maintenance phase the soft-
ware system is still changing through activities such as bug-
fixing, migration to new platforms, and adding new fea-
tures which were not planned from the beginning. There-
fore, even a nicely designed and accurately implemented
software system will probably incur several changes to
its functionality and consequently to its structural design.
This common scenario is the main cause of structural dam-
age, high maintenance cost, and eventually retirement of a

legacy system. To help this situation, the task of the soft-
ware maintainers is to measure the impair on the structure
of the software system and assess the current state of the
resulting legacy system. In this paper, we propose a novel
approach to assess the structural merit of the software sys-
tem based on the degree of functional scattering of software
features among the structural modules. In the proposed ap-
proach, the functionality of the system is represented as a set
of features that are implemented within the software mod-
ules and are manifested as constituents of different scenar-
ios to be run on the software system.

The proposed approach takes advantage of dynamic
analysis, data mining technique sequential pattern discov-
ery, and concept lattice analysis to provide comprehensive
information about the software system from different as-
pects. A key characteristic of this approach is to identify
a mapping between the implementation of the software fea-
tures and the structure of the system to assess the impact
of a feature on the structure of the system. We execute a
set of carefully defined scenarios that are specific to cer-
tain software features in order to reveal the realization of
the scenario functionality within the software system mod-
ules. In this paper, we propose a novel approach to dynamic
analysis and structural evaluation of a software system that
contributes to the software maintenance field by the follow-
ings: i) identification of the set of core functions that imple-
ment both specific features and commonly used features of a
software system; ii) providing a measure of scattering of the
feature functionality to the structural modules as well as a
measure of cohesion for a structural module; and iii) visual-
izing the functional distribution of specific features on a lat-
tice using concept lattice analysis. The approach uses tech-
niques such as sequential pattern discovery from data min-
ing domain, loop-based redundant trace elimination from
string processing field, as well as the visualization power
of the concept lattice analysis, to automatically extract the
functionality of the specific features as well as the common
features of a software system. The proposed structural as-
sessment directly represents the cohesion of module(s) im-

1

plementing a specific feature; this measure of cohesion is
much closer to the original definition of cohesion (“rela-
tive functional strength of a module” [11]) than using static
structural techniques such as inter-/intra-edge connectivity
of the components.

The remaining of this paper is organized as follows:
Section 2 describes the related work. In Section 3 the
proposed framework for dynamic analysis is presented.
Section 4 outlines the data cleansing process. Section 5
presents an overview of the techniques used in our ap-
proach. Section 6 describes the execution pattern analysis
and structural evaluation in more detail. In Section 7 Xfig
system is analyzed as the case study. Finally, the paper
concludes in Section 8.

2. Related Work

In this section, we briefly present the closest related ap-
proaches and compare them with our work.

The applications of concept lattice analysis in software
engineering have been studied for both static and dynamic
analyzes. In static analysis, C. Lindig et al. [10] and Siff
et al. [12] have applied concept lattice analysis in order
to modularize legacy software systems; where the relation-
ships between procedures and global variables in legacy
code are investigated to extract and evaluate the candidate
modules. In contrast to the above concept lattice analyzes,
our approach exploits dynamic behavior of a software sys-
tem to evaluate its structural properties. In dynamic analysis
approaches using concept lattice, Eisenbarth et al. [6, 7] in-
troduced a formal lattice to locate computational units that
implement a certain feature of the software system. Simi-
larly, we use the relation between scenarios and computa-
tional units (i.e., functions, methods, procedures) that are
invoked during the scenario execution. However, our tech-
nique reduces the number of invoked computational units in
each scenario execution to those reside in the execution pat-
terns in order to relax the complexity of the resulting lattice.

In a different context, El-Ramly et al. [8] apply sequen-
tial pattern mining on user-interaction traces of the system,
in order to reveal interaction patterns between graphical
user interface components.

The following approaches use program slicing tech-
niques to support software maintenance activities. Gal-
lagher et al. [9] and Beszedes [3] apply (static and dynamic)
program slicing in order to isolate the effects of a change in
the software source code. The method allows maintainers to
identify the statements and variables that may require mod-
ifications as a result of this change.

Overall, in the proposed technique we amalgam the ad-
vantages of data mining techniques with mathematical con-
cept lattice to explore non-trivial feature-based execution
patterns; consequently we identify individual modules that

Specific & Common

System

on Instrumented
Scenario set

Feature−Specific

Mining

Execution Pattern

Pre−Processing

&

Execution

Patterns

Patterns

All Execution
�
�
�
�

Storing in

Pattern Repository

Concept Lattice

Analysis

Assigning

Software Features to

Entry/Exit

Listings

Structure Evaluation

System Modules
&

New Scenario Set

Functions

Scenario Execution

Figure 1. Proposed framework for assigning
software feature onto the system modules.

implement software features as a means to measure the
module’s structural merit.

3. Proposed Framework

Figure 1 illustrates different steps of the proposed
framework for assigning software’s feature-functionality
onto the system modules. The framework takes advantage
of the relation discovery power ofdata miningandconcept
lattice analysisand provides a means for measuring the
impact of individual features on the structure of the system.
The operations in the framework of Figure 1 are as follows.

STEP 1: extracting execution traces. Important
features of a software system are identified by investigating
the system’s user manual, on-line help, similar systems
in the corresponding application domain, and also user’s
familiarity with the system. A set of relevant task scenarios
are selected that share a single software feature. We call
this set of scenarios asfeature-specific scenario set. For
example, in the case of a drawing tool software system, a
group of scenarios that share the “move” operation to move
a figure on the computer screen would constitute such a
feature-specific scenario set. In the next step, the software
under study is instrumented1 to generate text messages
at the entrance and exit of each function execution. By
running the group of feature-specific scenarios on the in-
strumented software system a set of unprocessedentry/exit
listings of function invocations are generated. In order to
make the large size of the generated traces manageable, in
a preprocessingstep we transform the extracted entry/exit
listing into a sequence of function invocations and also
remove all redundant function calls caused by the cycles
of the program loops. The trimmed execution traces are
then fed into the execution pattern mining engine in the
next stage. The preprocessing operation will be discussed

1Instrumentation refers to inserting particular pieces of code into the
software system (source code or binary image) to observe itsruntime be-
havior.

in more details in Section 4.

STEP 2: execution pattern discovery. In this step, we
reveal the common sequences of function invocations that
exist within the different executions of a program that cor-
respond to a set of task scenarios. We apply asequential
pattern miningalgorithm on the execution traces to dis-
cover such hiddenexecution patternsand store them in a
pattern repositoryfor further analysis. This operation will
be discussed in more details in Section 5.1. Each execu-
tion pattern is a candidate group of functions that imple-
ment a common feature within a scenario set. We employ
a strategy to spotlight on execution patterns corresponding
to specific features within a group of scenario sets. This is
performed by identifying those execution patterns that are
specific to a single software feature within one scenario set
(namelyfeature-specific patterns). Similarly, we identify
the execution patterns that are common among all sets of
scenarios (namelycommon patterns). Each execution pat-
tern has significance in localizing an important feature of
the subject software system. However, even for a specific
feature, a large group of execution patterns are generated
that must be organized (and some must be filtered out) to
identify core functions of a feature. Concept lattice is an
ideal tool for such a task, hence we use the visualization
power of concept lattice to generate clusters of functions
within feature-specific patterns and common patterns. Fi-
nally, by associating the functions of the generated clusters
to the system’s structural modules, i.e., files of the system,
and applying two metrics for measuringmodule cohesion
andfeature functional scattering, we measure the impact of
individual features on the structure of the software system.
This operation is discussed in Section 6.

4 Preprocessing

Dynamic analysis of a medium size software system us-
ing execution traces can produce very large traces ranging
to thousands or tens of thousands of function calls. This
would be a main source of difficulty in a dynamic analysis.
Therefore, before using the extracted entry/exit listing in
further stages, redundancies in a trace that are produced by
program loops and recursive function calls should be elim-
inated. For the analysis in this paper, we ignore recursive
function traces and focus on pruning the loop-based redun-
dancies.

In doing this, we transform theentry/exit listing(dis-
cussed in section 3) that is generated by instrumenting the
software system (usingAprobe tool [13]) into a dynamic
call tree, where nodes represent functions and edges rep-
resent function calls. Since each loop resides in the body
of a function, the loops will form identical subtrees as the
children of the parent function.

In this context, the loop redundancy removal problem is
reduced to identification of identical subtrees that are re-
peated under a particular node. In order to find the repe-
titions that exist among subtrees of a given node, we first
label these subtrees with unique IDs, where identical sub-
trees possess identical IDs. We then generate a string from
IDs of these sibling subtrees. By applying a repetitive string
finder algorithm (Crochemore[5]) we represent the original
string (with repetitions) in the form of a new string with
no repetitions. In this new string, each string repetition is
shown as one instance of the repeated items that is labeled
with the number of the repetitions. For example, in Figure
2(a) the stringF1,F2,F1,F2, ..., F1, F2is transformed into
a string with no repetition(F1,F2)n in Figure 2(b).

As a result, we keep only a subtree (among similar sub-
trees) that correspond to a single instance of each loop,
which greatly reduces the complexity of the dynamic call
tree. Finally, by traversing the loop-free dynamic call tree
in a depth-first order and keeping the visited nodes in a se-
quence, a loop-free execution trace is generated.

Procedure Foo

begin
Call F1;
while conditiondo

Call F1;
Call F2;

end
end

. . . , Foo, F1, F1, F2, F1, F2, . . . , F1, F2, . . .

(a)

. . . , Foo, F1, (F1, F2)n, . . .

(b)

Figure 2. (a) A trace generated from Proce-
dure Foo. (b) Loop free representation of (a).

In Procedure Foo a piece of code that produces a long
trace with repetitions of “F1, F2” is shown. Figures 2(a) and
2(b) represent the parts of execution trace that is produced
by Procedure Foo, and the result of applying Crochemore
algorithm, respectively.

5. Techniques for exploring patterns

In the following subsections, we briefly present the ap-
plication of sequential pattern mining and mathematical
concept lattice analysis. The former is used to extract highly
repeated execution patterns and the later is applied on the

extracted execution patterns in order to cluster the functions
that exist within common / feature-specific patterns.

5.1. Execution Pattern Mining

A major characteristic of the run time analysis of a soft-
ware system is generating execution traces with large sizes
that make the task of analysis a daunting one. The effec-
tive function-trace of an intended scenario is cluttered by
a large number of function calls from various places such
as initialization / termination operations, utilities, and loop-
based repetitions. In the rest of this subsection, we describe
the application of a data mining technique to discover se-
quences of functions in a software system that correspond
to certain system features. In the data mining literature,se-
quential pattern miningis used to extract frequently occur-
ring patterns among the sequences of customer transactions
[2]. In this context, the sequence of all transactions corre-
sponding to a certain customer (already ordered by increas-
ing transaction-time) is known as acustomer-sequence. A
customer-sequencesupportsa sequences if s is a sub-
sequence of this customer-sequence. A frequently occur-
ring sequence of transactions (namely a pattern) is a se-
quence that is supported by a user-specified minimum num-
ber of customer-sequences (namelyMinSupport of this
pattern).

In this paper, we use a modified version of the sequen-
tial pattern mining algorithm by Agrawal [2], where anex-
ecution patternis defined as a contiguous part of an exe-
cution trace (as a customer-sequence defined above) that is
supported byMinSupport number of execution traces. A
typical sequential pattern mining algorithm allows extract-
ing noncontiguous sequences of function calls. In most
cases, this characteristic drastically increases the time/space
complexity of the pattern mining algorithm and particularly
complicates the dynamic analysis of a software system. In
the presented approach, each extracted sequential pattern
consists of solely a contiguous part of different execution
traces. This strategy produces meaningful execution pat-
terns that correspond to core functions implementing spe-
cific functionalities of the system. Whereas, extracting exe-
cution patterns that contain noncontiguous function invoca-
tions would generate an overwhelming number of meaning-
less patterns that consist of unrelated parts of the execution
traces.

5.2. Concept Lattice Analysis

Themathematical concept analysiswas first introduced
by Birkhoff in 1940 [4]. In this formalism, a binary relation
between a set of “objects” and a set of “attribute-values”
is represented as a lattice. Aconceptis a maximal collec-
tion of objects sharing maximal common attribute-values.

A concept latticecan be composed to provide significant
insight into the structure of a relation between objects and
attribute-values such that each node of the lattice represents
a concept.

A concept lattice can be used to collect the set of shared
attributes contained in a set of objects such that the shared
attributes appear in the nodes that are located in the upper
region of the lattice. Consequently, the nodes in the lower
region of the lattice collect the attributes that are specific to
the individual objects in that region. We exploit this prop-
erty to group functions of the extracted execution patterns.
The strategy to identify groups of shared attributes will be
described in the next section.

6. Assigning Feature to Structure

In this section, we present the assignment ofsoftware
feature familiesonto the software system modules, as a
means of assessing the merit of the software structure. As it
was discussed in the proposed framework in Section 3, we
define and execute a number of feature-specific scenario
sets where each scenario set targets a different software
feature. Furthermore, we generate execution patterns
by applying the sequential pattern mining algorithm on
the loop-free execution traces. The generated execution
patterns and their functions are then mapped onto a concept
lattice in order to identify clusters of functions, where
each cluster corresponds to a family of related software
features. In the remaining of this section, we describe
pattern analysis aspects and software structure assessment
of the proposed approach.

Scenario Model
In the context of this paper, we define a scenario as a se-

quence of relevant features of a software system, where:

• featureφ is a unit of software requirements that de-
scribes a single functionality in the software system
under study.Φ is the set of all available features.

• feature familyΦφ is a set of semantically relevant fea-
tures to specific featureφ in the subject software sys-
tem that are defined towards similar functionalities.

• scenarios is a sequence of featuresφ ∈ Φ; thus
s = [φ1, φ2, . . . , φn]. AlsoS is the set of all applicable
scenarios on the system.

• feature-specific scenario setSφ is a set of scenarios
that uses specific featureφ; thus
Sφ = {s | s ∈ S ∧ φ ∈ setOf2(s)}.

2setOf(s) denotes to the set representation of sequence s

An execution pattern is treated as a sequence of func-
tions that implement common feature(s) within a scenario
set. In the following, the different kinds of execution
patterns that may exist in the execution of a group of
feature-specific scenario sets along with the corresponding
extraction mechanisms are presented.

Feature-specific execution pattern
A feature-specific execution pattern corresponds to the core
functions that implement a targeted featureφ of a scenario
setSφ (e.g., drawing a specific figure such as rectangle).
Such a pattern exists in the majority of a feature-specific
scenario-setSφ. In order to extract a feature-specific
pattern, we should increase the level ofMinSupport of
the generated execution patterns to a number that covers
the majority of the scenarios inSφ.

Omnipresent execution pattern
An omnipresent execution pattern is common to almost
every task scenario of the software system (e.g., software
initialization / termination operations, or mouse tracking).
Such a pattern exists in every trace of every scenario-set
Sφ. In order to extract such a pattern, we should use a
filtering mechanism (concept lattice in section 5.2) to filter
out the feature-specific patterns from this group of patterns.

Concept Lattice Analysis
We employ a strategy to spotlight on execution patterns cor-
responding to specific features within a group of scenario
sets. In this context, we use concept lattice analysis to clus-
ter the group of functions in patterns that exclusively corre-
spond to a shared feature of a scenario set; also to cluster
the group of functions in patterns that are common to every
scenario set. A key property of the functions in both kinds
of clusters is that these functions belong to sharedcontigu-
ous sequencesof function calls not to the shared scattered
function calls within scenario set executions. In our setting
for concept lattice analysis, an object is a targeted feature
φ ∈ Φ of a feature-specific scenario setSφ, and an attribute
is a functionf that participates in the execution patterns
within Sφ.

In this context, the omnipresent function clusters appear
in the upper region of the lattice, and feature-specific func-
tion clusters are collected by nodes in the lower region of
the lattice. In the following, we define the group of con-
cepts that are relevant to feature-specific clusters.

• feature-specific conceptcφ is a concept whose support
consists of a single featureφ. We defineF ′

φ to be the
set of functions corresponding tocφ on the lattice.

• we defineFΦφ
to be the set of functions that imple-

ment the feature familyΦφ. Thus:

FΦφ
=

⋃

ϕ∈Φφ

F ′

ϕ

whereFΦφ
represents a software systemlogical mod-

ule that implement the core functionality of a feature
family Φφ.

6.1. Structural Cohesion and Functional Scattering

In this section, we assess the degree of distribution of
collected functions of logical moduleFΦφ

over the structure
of the system as a means for evaluating the feature func-
tional scattering among software modules. Moreover, we
assess the degree of concentration of logical module func-
tions FΦφ

within a specific software module (e.g., file) to
evaluate the software module’s cohesion with respect to fea-
ture familyΦφ. These two measures provide a mechanism
to evaluate the impact of individual features on the structure
of the software system.

In the following,SCΦφ
(m) denotes structural cohesion

of module m with respect to logical moduleFΦφ
and

FS(Φφ) denotes functional scattering of feature familyΦφ:

• Let MΦφ
= {m1, m2, . . . , mk} be the set of modules

where all the functions inFΦφ
are defined in elements

of MΦφ
.

• Let Fm denote the set of functions that are defined in
modulem.

• Structural CohesionSCΦφ
(m) of modulem with re-

spect to logical moduleFΦφ
is defined as:

SCΦφ
(m) =

|Fm ∩ FΦφ
|

|Fm|

• Functional ScatteringFS(Φφ) of feature familyΦφ is
defined based on the distribution of functions inFΦφ

over modules inM as:

FS(Φφ) = 1 −

∑
m∈MΦφ

SCΦφ
(m)

|MΦφ
|

A software system with high structural cohesion
SCΦφ

(m) for its individual modules and low functional
scatteringFS(Φφ) among its structure represents a modu-
lar system that requires less maintenance efforts. However,
a high degree of functional scattering corresponding to a
feature familyΦφ directly signifies a high structural impact
that is caused by that feature family. Hence the system re-
quires more maintenance efforts to tackle with the conse-
quences of propagated change to other software modules.

7. Case Study

In this section, we discuss the result of applying the pro-
posed dynamic analysis technique on Xfig 3.2.3d [1]. Xfig
is an open source, medium-size (80 KLOC), menu driven,
C language drawing tool under X Window system. Xfig has
the ability to interactively draw and manipulate graphical
objects (circle, ellipse, line, spline) through operations such
as copy, move, edit, scale, and rotate. In order to extract
the core functions that implement a specific feature (e.g.,
Circle-Diameter in Table 2) we define a group of feature-
specific scenarios to target this feature and execute on the
instrumented Xfig system to obtain the corresponding ex-
ecution traces. After pruning the loop-based function calls
(section 4) we apply the execution pattern mining process to
obtain the existing execution patterns. We repeat the above
process for each member of a feature-family in order to col-
lect the corresponding execution patterns. Table 2 presents
the statistical information for two feature-families of Xfig.

In a further step, we supply the resulting execution pat-
terns to a concept lattice generation tool. Viewing the dis-
tribution of the concepts and their functions throughout the
concept lattice allows to get insight into the structure of the
feature-specific concepts and their functions. Consequently,
it allows us to collect the group of functions that correspond
to different feature-families. Finally, based on inspecting
the source files of Xfig, we measure the structural cohesion
of corresponding source files, as well as the feature func-
tionality scattering of the feature families under study. The
results of this evaluation are presented in Table 3.

In the followings, we discuss the important properties
of the proposed pattern based dynamic analysis technique
using the Xfig case study.

Mapping logical modules onto structural modules.
Table 1 demonstrates the results of experimentation with
Xfig tool to reveal the core functions for two Xfig feature
families. We focus on drawing a figure in the ellipse
family (including circle and ellipse) such that each figure
can be drawn in two different ways, i.e., by-radius and
by-diameter. Furthermore, we expand our experiments
on editing operation of the Xfig tool (i.e., copy graphical
objects). The extracted logical modules are shown in Table
1 and according to the Xfig naming convention it is clear
that the logical modules truly reflect the core functions of
the feature families.

Focusing on the important sub-traces.
Table 2 represents the attributes of a group of feature-
specific scenario sets that we use in the analysis process.
This table illustrates a major characteristic of the proposed
dynamic analysis with regard to reducing the scope of the
analysis from huge sizes of the execution traces (Average

Feature Extracted Core Functions
Family representing logical moduleFΦφ

init circlebyradiusdrawing, elasticcbr, resizingcbr,
createcirclebyrad, circlebyradiusdrawing selected,
init circlebydiameterdrawing, elas-
tic cbd, resizingcbd, createcirclebydia,
circlebydiameterdrawing selected,
init ellipsebydiameterdrawing, elasticebd, re-
sizing ebd, createellipsebydia, ellipsebydiame-
ter drawing selected, initellipsebyradiusdrawing,
elasticebr, resizingebr

Ellipse createellipsebyrad, ellipsebyra-
dius drawing selected, addellipse, pwcurve,
createellipse, centermarker, drawellipse, re-
display ellipse ellipsebound listadd ellipse
set latestellipse toggleellipsemarker
list deleteellipse

Copy copy selected initcopy init arb copy setlastlinkinfo
init arb move init move moveselected
set lastposition setnewposition movingline
init linedragging adjustpos placeline translateline
adjust links placeline x

Table 1. Results of feature to code assign-
ment for 2 features of Xfig drawing tool.

Trace Size) to the manageable sizes of the execution pat-
terns (Average Pattern Size).

Structural evaluation. For each feature familyΦφ in
Table 2 we inspect the Xfig source files that define the func-
tions that implement the corresponding logical moduleFΦφ

of that feature family. The results of measuring the struc-
tural cohesionSCΦφ

(m) of these files are presented in Table
3. These results indicate that file dellipse has high cohesion
with respect to logical module of feature familyEllipseand
files e copy, and emove are also highly cohesive with re-
spect to feature familyCopy. However, study of the feature
functional scattering measures allows us to better interpret
the characteristics of these logical modules. For example,in
the case ofEllipsea portion of the logical moduleFΦφ

is lo-
cated in a large structural module uelastic which results in
a high functional scattering measure. Whereas, in the case
of Copy feature family, the logical module almost covers
two structural modules ecopy and emove which indicates
low scattering.

We also adopt a minimum threshold value of 10% in or-
der to consider a structural module in the calculation of the
above measurements. The results in Table 2 are promising
in the sense that they reflect meaningful measures with re-
spect to the sizes of logical and structural modules shown.
Regarding the results of our structural evaluations, we can
predict high maintenance activities for any change to theEl-
lipse feature family. Similarly, changes to theCopyfeature
family would not propagate throughout the system which
indicates less maintenance activities.

Feature Specific Number of Average Average Number of Average
Family Feature of Xfig Different Scenarios Trace Size Pruned Trace Size Extracted Patterns Pattern Size

Circle-Diameter 10 7234 2600 46 33
Draw Circle-Radius 10 8143 2463 48 32
Ellipse Ellipse-Diameter 10 6405 2536 41 37

Ellipse-Radius 10 7351 2549 39 35

Move Objects 4 11887 3166 31 53
Copy Copy Objects 4 11460 3269 37 50

Table 2. Results of execution trace extraction and executio n pattern mining for 2 Xfig feature families.

Feature Family Contributed |Fm| |Fm ∩ FΦφ
| Structural Cohesion Functional Scattering

Φφ File (m) SCΦφ
(m) FS(Φφ)

d ellipse.c 16 12 75%
Ellipse u elastic.c 67 8 12% 57%

e copy.c 5 3 60%
Copy e move.c 4 3 75% 32%

Table 3. Structural cohesion and feature functional scatte ring measures for 2 Xfig feature families.

8. Conclusions

In this paper, we proposed a novel approach to dynamic
analysis and structural assessment of a software system that
takes advantage of repeated patterns of execution traces that
exist within the executions of a set of carefully designed
task scenarios. The proposed approach benefits from the
discovery nature of data mining techniques and concept lat-
tice analysis to extract both feature specific and common
groups of functions that implement important features of
a software system. The resulting execution patterns pro-
vide discovery of valuable information out of noisy execu-
tion traces. The proposed approach is centered around a set
of task scenarios that share a specific system feature and
introduces a means for measuring the impact of individual
features on the structure of the software system. The pro-
posed technique has been applied on a medium size interac-
tive drawing tool with very promising results in extracting
both feature specific and common functions. Moreover, the
level of “structural cohesion” and “feature functional scat-
tering” are measured that provides a way for assessing the
structure of the experimented tool.

References

[1] Xfig version 3.2.3. http://www.xfig.org/.

[2] R. Agrawal and R. Srikant. Mining sequential pat-
terns. In Proceedings ofICDE ’95 , pages 3–14, 1995.

[3] A. Beszedes. Union slices for program maintenance.
In Proceedings ofICSM ’02, pages 12–21, 2002.

[4] G. Birkhoff. Lattice Theory. American Mathematical
Society, 1st edition, 1940.

[5] M. Crochemore. An optimal algorithm for computing
the repetitions in a word.Information Process Letters,
12(5):244–250, 1981.

[6] T. Eisenbarth, R. Koschke, and D. Simon. Derivation
of feature component maps by means of concept anal-
ysis. In Proceedings ofCSMR ’01, pages 176–179,
2001.

[7] T. Eisenbarth, R. Koschke, and D. Simon. Locating
features in source code.IEEE Transactions on Soft-
ware Engineering, 29:210 – 224, March 2003.

[8] M. El-Ramly, E. Stroulia, and P. Sorenson. Recover-
ing software requirements from system-user interac-
tion traces. In Proceedings ofSEKE ’02:, pages 447–
454, 2002.

[9] K. B. Gallagher and J. R. Lyle. Using program slicing
in software maintenance.IEEE Trans. Software Eng.,
17(8):751–761, 1991.

[10] C. Lindig and G. Snelting. Assessing modular struc-
ture of legacy code based on mathematical concept
analysis. In Proceedings ofICSE ’97, pages 349–359,
1997.

[11] R. S. Pressman.Software Engineering, A Practitioner
Approach. McGraw-Hill, third edition, 1992.

[12] M. Siff and T. W. Reps. Identifying modules via con-
cept analysis. In Proceedings ofICSM ’97, pages 170–
179, 1997.

[13] OC. Systems. Aprobe version 4.2 for unix, 2003.

