Application of Execution Pattern Mining and Concept Lattice Analysis on
Software Structure Evaluation

Kamran Sartipi and Hossein Safyallah
Dept. Computing and Software, McMaster University
Hamilton, ON, L8S 4K1, Canada
{sartipi, safyalf @mcmaster.ca

Abstract legacy system. To help this situation, the task of the soft-
ware maintainers is to measure the impair on the structure
Software maintenance activities for producing a feature- of the software system and assess the current state of the
rich system tend to impair the software’s structure into an resulting legacy system. In this paper, we propose a novel
unshaped and cost-prone legacy system. Thus, it is desirapproach to assess the structural merit of the software sys-
able to keep track and measure the impacts of the newlytem based on the degree of functional scattering of software
added features on the structure of the software system. Théeatures among the structural modules. In the proposed ap-
proposed technique in this paper is based on extracting fre- proach, the functionality of the systemis represented e a s
guent patterns in the execution traces of a software systenof features that are implemented within the software mod-
using a pattern discovery technique. The patterns reptesen ules and are manifested as constituents of different scenar
functionalities that correspond to the feature specific-sce i0s to be run on the software system.
narios. In a further step, the generated execution patterns The proposed approach takes advantage of dynamic
are distributed on a concept lattice to separate feature spe analysis, data mining technique sequential pattern discov
cific patterns from commonly used patterns. The proposedery, and concept lattice analysis to provide comprehensive
technique allows for assigning software features onto the information about the software system from different as-
software system modules and provides a means for assespects. A key characteristic of this approach is to identify
ing the degree of functionality scattering among the systema mapping between the implementation of the software fea-
modules. Consequently, we measure the impact of individtures and the structure of the system to assess the impact
ual features on the structure of the system. A case study orof a feature on the structure of the system. We execute a
the Unix Xfig drawing tool is used to present the accuracy set of carefully defined scenarios that are specific to cer-
of the approach. tain software features in order to reveal the realization of
the scenario functionality within the software system mod-
KEYWORDS: Software Maintenance; Dynamic Analy- ules. In this paper, we propose a novel approach to dynamic
sis; Execution Pattern Mining; Concept Lattice; Feature. ~ analysis and structural evaluation of a software system tha
contributes to the software maintenance field by the follow-
ings: i) identification of the set of core functions that irpl
ment both specific features and commonly used features of a
software system; ii) providing a measure of scattering ef th
Software systems are continuously evolving throughout feature functionality to the structural modules as well as a
their life time from early development to their maintenance measure of cohesion for a structural module; and iii) visual
and retirement. During the maintenance phase the soft-izing the functional distribution of specific features orat |
ware system is still changing through activities such as bug tice using concept lattice analysis. The approach uses tech
fixing, migration to new platforms, and adding new fea- niques such as sequential pattern discovery from data min-
tures which were not planned from the beginning. There- ing domain, loop-based redundant trace elimination from
fore, even a nicely designed and accurately implementedstring processing field, as well as the visualization power
software system will probably incur several changes to of the concept lattice analysis, to automatically extrhet t
its functionality and consequently to its structural desig functionality of the specific features as well as the common
This common scenario is the main cause of structural dam-features of a software system. The proposed structural as-
age, high maintenance cost, and eventually retirement of asessment directly represents the cohesion of module(s) im-

1. Introduction

plementing a specific feature; this measure of cohesion is T Sconario Execuion Ltnge [Pre-Processing
much closer to the original definition of cohesion (‘“rela- Feature-seecific | on instrumented ™| Execution Pattern
Scenario set - System Mining

tive functional strength of a module” [11]) than using stati
structural techniques such as inter-/intra-edge convicti Execution
of the components. i New Scenario Set Stoing in APatterns
The remaining of this paper is organized as follows: Pattern Repository | =<
Section 2 describes the related work. In Section 3 the

All Execution Specific & Common
proposed framework for dynamic analysis is presented. Patterns y Functions prm—
Section 4 outlines the data cleansing process. Section 5 Concept Lattice | __| Software Features to
presents an overview of the techniques used in our ap- Analysis System Modules
proach. Section 6 describes the execution pattern analysis Structure Evaluation

and structural evaluation in more detail. In Section 7 Xfig Figure 1. Proposed framework for assigning
system is analyzed as the case study. Finally, the paper software feature onto the system modules.
concludes in Section 8.
implement software features as a means to measure the

2. Related Work module’s structural merit.

In this section, we briefly present the closest related ap- 3. Proposed Framework
proaches and compare them with our work.

The applications of concept lattice analysis in software Figure 1 illustrates different steps of the proposed
engineering have been studied for both static and dynamicframework for assigning software’s feature-functionalit
analyzes. In static analysis, C. Lindig et al. [10] and Siff onto the system modules. The framework takes advantage
et al. [12] have applied concept lattice analysis in order of the relation discovery power afata miningandconcept
to modularize legacy software systems; where the relation-lattice analysisand provides a means for measuring the
ships between procedures and global variables in legacyimpact of individual features on the structure of the system
code are investigated to extract and evaluate the candidat&@he operations in the framework of Figure 1 are as follows.
modules. In contrast to the above concept lattice analyzes,
our approach exploits dynamic behavior of a software sys- STEP 1: extracting execution traces Important
tem to evaluate its structural properties. In dynamic asialy features of a software system are identified by investigatin
approaches using concept lattice, Eisenbarth et al. [B-7]i the system’s user manual, on-line help, similar systems
troduced a formal lattice to locate computational unitd tha in the corresponding application domain, and also user’'s
implement a certain feature of the software system. Simi- familiarity with the system. A set of relevant task scenario
larly, we use the relation between scenarios and computaare selected that share a single software feature. We call
tional units (i.e., functions, methods, procedures) thiat a this set of scenarios deature-specific scenario setFor
invoked during the scenario execution. However, our tech- example, in the case of a drawing tool software system, a
nique reduces the number of invoked computational units in group of scenarios that share the “move” operation to move
each scenario execution to those reside in the executien pata figure on the computer screen would constitute such a
terns in order to relax the complexity of the resulting Gti feature-specific scenario set. In the next step, the saftwar

In a different context, EI-Ramly et al. [8] apply sequen- under study is instrumentetito generate text messages
tial pattern mining on user-interaction traces of the syste at the entrance and exit of each function execution. By
in order to reveal interaction patterns between graphicalrunning the group of feature-specific scenarios on the in-
user interface components. strumented software system a set of unprocess#y/exit

The following approaches use program slicing tech- listings of function invocations are generated. In order to
niques to support software maintenance activities. Gal- make the large size of the generated traces manageable, in
lagher et al. [9] and Beszedes [3] apply (static and dynamic)a preprocessingtep we transform the extracted entry/exit
program slicing in order to isolate the effects of a change in listing into a sequence of function invocations and also
the software source code. The method allows maintainers toremove all redundant function calls caused by the cycles
identify the statements and variables that may require mod-of the program loops. The trimmed execution traces are
ifications as a result of this change. then fed into the execution pattern mining engine in the

Overall, in the proposed technique we amalgam the ad-next stage. The preprocessing operation will be discussed
vantage§ of data mining teChr_"queS with mathematical C_On- linstrumentation refers to inserting particular pieces adecinto the
cept lattice to explore non-trivial feature-based exemuti sofware system (source code or binary image) to observaritane be-
patterns; consequently we identify individual moduleg tha havior.

in more details in Section 4. In this context, the loop redundancy removal problem is
reduced to identification of identical subtrees that are re-
STEP 2: execution pattern discovery In this step, we peated under a particular node. In order to find the repe-
reveal the common sequences of function invocations thattitions that exist among subtrees of a given node, we first
exist within the different executions of a program that cor- label these subtrees with unique IDs, where identical sub-
respond to a set of task scenarios. We appbeaquential trees possess identical IDs. We then generate a string from
pattern miningalgorithm on the execution traces to dis- IDs of these sibling subtrees. By applying a repetitivangtri
cover such hiddeexecution patternand store them in a finder algorithm Crochemord5]) we represent the original
pattern repositoryfor further analysis. This operation will string (with repetitions) in the form of a new string with
be discussed in more details in Section 5.1. Each execu-o repetitions. In this new string, each string repetiti®n i
tion pattern is a candidate group of functions that imple- shown as one instance of the repeated items that is labeled
ment a common feature within a scenario set. We employwith the number of the repetitions. For example, in Figure
a strategy to spotlight on execution patterns correspgndin 2(a) the string=1,F2,F1,F2, ..., F1, F2s transformed into
to specific features within a group of scenario sets. This is a string with no repetitiofF1,F2)* in Figure 2(b).
performed by identifying those execution patterns that are As a result, we keep only a subtree (among similar sub-
specific to a single software feature within one scenario settrees) that correspond to a single instance of each loop,
(namelyfeature-specific patterfjis Similarly, we identify which greatly reduces the complexity of the dynamic call
the execution patterns that are common among all sets ofiree. Finally, by traversing the loop-free dynamic calktre
scenarios (namelgommon patterr)s Each execution pat- in a depth-first order and keeping the visited nodes in a se-
tern has significance in localizing an important feature of quence, a loop-free execution trace is generated.
the subject software system. However, even for a specific
feature, a large group of execution patterns are generated Procedure Foo
that must be organized (and some must be filtered out) to begin

identify core functions of a feature. Concept lattice is an Call F1;

ideal tool for such a task, hence we use the visualization while conditiondo
power of concept lattice to generate clusters of functions Call F1;
within feature-specific patterns and common patterns. Fi- Call F2;

nally, by associating the functions of the generated ctaste end

to the system'’s structural modules, i.e., files of the system end
and applying two metrics for measurimgodule cohesion
andfeature functional scatteringve measure the impact of
individual features on the structure of the software system
This operation is discussed in Section 6.

..., Foo,F1,F1,F2,F1,F2,...,F1,F2,...
(a)

4 Preprocessing ..., Foo,F1,(F1,F2)", ...
(b)

Dynamic analysis of a medium size software system us-
ing execution traces can produce very large traces ranging Figure 2. (a) A trace generated from Proce-
to thousands or tens of thousands of function calls. This dure Foo. (b) Loop free representation of (a).
would be a main source of difficulty in a dynamic analysis.
Therefore, before using the extracted entry/exit listing i
further stages, redundancies in a trace that are produced bYra

program loops and recursive function calls should be elim- :)
inated. For Fhe analysis in this paper, we ignore recursivez(b) represent the parts of execution trace'that is produced
function traces and focus on pruning the loop-based redun—by Pr.ocedure FOO.’ and the result of applying Crochemore
dancies. algorithm, respectively.

In doing this, we transform thentry/exit listing(dis- .)
cussed in section 3) that is generated by instrumenting thed. Techniques for exploring patterns
software system (usingprobetool [13]) into a dynamic
call tree, where nodes represent functions and edges rep- In the following subsections, we briefly present the ap-
resent function calls. Since each loop resides in the bodyplication of sequential pattern mining and mathematical
of a function, the loops will form identical subtrees as the concept lattice analysis. The formeris used to extractihigh
children of the parent function. repeated execution patterns and the later is applied on the

In Procedure Foo a piece of code that produces a long
ce with repetitions ofF1, F2'is shown. Figures 2(a) and

extracted execution patterns in order to cluster the fonsti A concept latticecan be composed to provide significant

that exist within common / feature-specific patterns. insight into the structure of a relation between objects and
attribute-values such that each node of the lattice reptgse
5.1. Execution Pattern Mining a concept.

A concept lattice can be used to collect the set of shared

A major characteristic of the run time analysis of a soft- attributes contained in a set of objects such that the shared
ware system is generating execution traces with large sizegtributes appear in the nodes that are located in the upper
that make the task of analysis a daunting one. The effec-region of the lattice. Consequently, the nodes in the lower
tive function-trace of an intended scenario is cluttered by région of the lattice collect the attributes that are speodfi
a large number of function calls from various places such the individual objects in that region. We exploit this prop-
as initialization / termination operations, utilities,ciioop- €ty to group functions of the extracted execution patterns
based repetitions. In the rest of this subsection, we desscri The strategy to identify groups of shared attributes will be
the application of a data mining technique to discover se- described in the next section.
guences of functions in a software system that correspond
to cerFain system f_egtgres. In the data mining literatsee, g Assigning Feature to Structure
guential pattern minings used to extract frequently occur-
ring patterns among the sequences of customer transactions , , .
[2]. In this context, the sequence of all transactions corre N this section, we present the assignmentoftware

sponding to a certain customer (already ordered by increasf€ature familiesonto the software system modules, as a
ing transaction-time) is known ascastomer-sequence\ means of assessing the merit of the software structure. As it

customer-sequenceupportsa sequence if s is a sub- was discussed in the proposed framework in Sgption 3, we
sequence of this customer-sequence. A frequently occurdefine and execute a number of feature-spemflc scenario
ring sequence of transactions (namely a pattern) is a seSets where each scenario set targets a dlffer.ent software
quence that is supported by a user-specified minimum num-feature. Furthermore, we generate execution patterns
ber of customer-sequences (namalfinSupport of this by applying the sequential pattern mining algorithm on

pattern). the loop-free execution traces. The generated execution
In this paper, we use a modified version of the sequen_patterns and their functions are then mapped onto a concept
tial pattern mining algorithm by Agrawal [2], where a- lattice in order to identify clusters of functions, where

ecution patterris defined as a contiguous part of an exe- each cluster correspon.d.s to a fa_mily of. related softw_are
cution trace (as a customer-sequence defined above) that i€atures. In the remaining of this section, we describe
supported by\inSupport number of execution traces. A pattern analysis aspects and software structure assessmen
typical sequential pattern mining algorithm allows extrac ©f the proposed approach.

ing noncontiguous sequences of function calls. In most)

cases, this characteristic drastically increases thdsjmaee Scenario Model _ .
complexity of the pattern mining algorithm and particuarl In the context of this paper, we define a scenario as a se-
complicates the dynamic analysis of a software system. Induence of relevant features of a software system, where:

the presented approach, each extracted sequential pattern
consists of solely a contiguous part of different execution
traces. This strategy produces meaningful execution pat-
terns that correspond to core functions implementing spe-
cific functionalities of the system. Whereas, extracting-ex
cution patterns that contain noncontiguous function iavoc
tions would generate an overwhelming number of meaning-
less patterns that consist of unrelated parts of the exatuti
traces.

o feature¢ is a unit of software requirements that de-
scribes a single functionality in the software system
under study® is the set of all available features.

o feature family®, is a set of semantically relevant fea-
tures to specific featurg in the subject software sys-
tem that are defined towards similar functionalities.

e scenarios is a sequence of features= @; thus
s =|é1, P2, ..., 0n]. AlsoS is the set of all applicable

5.2. Concept Lattice Analysis scenarios on the system.

The mathematical concept analysigs first introduced « feature-specific scenario séY, is a set of scenarie
by Birkhoffin 1940 [4]. In this formalism, a binary relation that uses specific feature thus
between a set of “objects” and a set of “attribute-values” Sy ={s|s€S A ¢csetOf(s)}.

is represented as a lattice. cddnceptis a maximal collec-
tion of objects sharing maximal common attribute-values. 2setOf(s) denotes to the set representation of sequence s

An execution pattern is treated as a sequence of func-

tions that implement common feature(s) within a scenario
set. In the following, the different kinds of execution
patterns that may exist in the execution of a group of
feature-specific scenario sets along with the correspgndin
extraction mechanisms are presented.

Feature-specific execution pattern
A feature-specific execution pattern corresponds to the cor
functions that implement a targeted featdref a scenario
setS, (e.g., drawing a specific figure such as rectangle).
Such a pattern exists in the majority of a feature-specific
scenario-setS;. In order to extract a feature-specific
pattern, we should increase the level dfinSupport of

Fo,= |J F,
pEdy

whereFs, represents a software systéwogical mod-
ule that implement the core functionality of a feature
family ®;.

6.1. Structural Cohesion and Functional Scattering

In this section, we assess the degree of distribution of
collected functions of logical modulg; , over the structure
of the system as a means for evaluating the feature func-
tional scattering among software modules. Moreover, we

the generated execution patterns to a number that COVer§gqess the degree of concentration of logical module func-

the majority of the scenarios ;.

Omnipresent execution pattern
An omnipresent execution pattern is common to almost

tions Fp, within a specific software module (e.qg., file) to
evaluate the software module’s cohesion with respect to fea
ture family 4. These two measures provide a mechanism
to evaluate the impact of individual features on the stmectu

every task scenario of the software system (e.g., softwaref the software system.

initialization / termination operations, or mouse trackin

In the following, SGp, (m) denotes structural cohesion

Such a pattern exists in every trace of every scenario-seiys module m with respect to logical moduléy, and
Sg. In order to extract such a pattern, we should use a g(4,,) denotes functional scattering of feature faniy:

filtering mechanism (concept lattice in section 5.2) to filte
out the feature-specific patterns from this group of pagtern

Concept Lattice Analysis

We employ a strategy to spotlight on execution patterns cor-
responding to specific features within a group of scenario

sets. In this context, we use concept lattice analysis & clu
ter the group of functions in patterns that exclusively eerr

spond to a shared feature of a scenario set; also to cluster
the group of functions in patterns that are common to every

scenario set. A key property of the functions in both kinds
of clusters is that these functions belong to shamautigu-
ous sequenced function calls not to the shared scattered
function calls within scenario set executions. In our seiti
for concept lattice analysis, an object is a targeted featur
¢ € ® of a feature-specific scenario sgf, and an attribute

is a functionf that participates in the execution patterns
within Sy.

In this context, the omnipresent function clusters appear

in the upper region of the lattice, and feature-specific func
tion clusters are collected by nodes in the lower region of
the lattice. In the following, we define the group of con-

cepts that are relevant to feature-specific clusters.

o feature-specific concepy, is a concept whose support
consists of a single feature We definqu’5 to be the
set of functions corresponding ¢g on the lattice.

o we defineFs, to be the set of functions that imple-
ment the feature familg,. Thus:

o Let My, = {mi,ma,...,m} be the set of modules
where all the functions ity , are defined in elements
0fﬂ4¢w

e Let F;,, denote the set of functions that are defined in
modulem.

e Structural Cohesio®Cs, (m) of modulem with re-
spect to logical modulé’s, is defined as:

|faanFbé|
SG, (m) = T Fa]

e Functional ScatteringS(®,) of feature family®,, is
defined based on the distribution of functionsHg,
over modules inV/ as:

ey, SCo, (m)

|A4¢J

FS(®y) =1—

A software system with high structural cohesion
SGCy,(m) for its individual modules and low functional
scatteringFS(®,,) among its structure represents a modu-
lar system that requires less maintenance efforts. However
a high degree of functional scattering corresponding to a
feature family®,, directly signifies a high structural impact
that is caused by that feature family. Hence the system re-
quires more maintenance efforts to tackle with the conse-
guences of propagated change to other software modules.

7. Case Study

Feature Extracted Core Functions
Family representing logical modulers
In this section, we discuss the result of applying the pro- init_circlebyradiusdrawing, elasticcbr, resizingcbr,
posed dynamic analysis technique on Xfig 3.2.3d [1]. Xfig createcirclebyrad, circlebyradiusrawing selected,
. dium-size (80 KLOC) menu driven init_circlebydiameterdrawing, elas-
IS an open sourc_e, me) ! - ’ tic_chd, resizingchd, createcirclebydia,
C language drawing tool under X Window system. Xfig has circlebydiameterdrawing selected,
the ability to interactively draw and manipulate graphical init_ellipsebydiametedrawing, ~ elasticebd, re-
objects (circle, ellipse, line, spline) through operasisnch sizingebd, createllipsebydia, ellipsebydiame
. ter.drawingselected, initellipsebyradiusdrawing,
as copy, move, edit, scale, and rotate. In order to extract elasticebr, resizingebr
the core functions that implement a specific feature (e.g.,| Ellipse createellipsebyrad, ellipsebyra|
Circle-Diameter in Table 2) we define a group of feature- diusdrawingselected, adetllipse, pwcurve,
specific scenarios to target this feature and execute on the createellipse, centemarker, ~drawellipse, =~ re-
. . . . display.ellipse ellipsebound listadd ellipse
mstrgmented Xfig system to obtain the correspon.dmg ex- setlatestellipse togglellipsemarker
ecution traces. After pruning the loop-based functionscall list_deleteellipse
(section 4) we apply the execution pattern mining process to, €opy copy_selected initcopy initarh copy setlastlinkinfo
obtain the existing execution patterns. We repeat the above init_arh move initmove - moveselected
L setlastposition sehewposition movingdine
process for each mgmber of a_feature—famlly in order to col- init_linedragging adjuspos placeline translateline
lect the corresponding execution patterns. Table 2 present adjustlinks placeline x

the statistical information for two feature-families of ¥fi _
In a further step, we supply the resulting execution pat- 1able 1. Results of feature to code assign-
terns to a concept lattice generation tool. Viewing the dis- ~ Ment for 2 features of Xfig drawing tool.
tribution of the concepts and their functions throughoet th
concept lattice allows to get insight into the structurehaf t
feature-specific concepts and their functions. Consetyent)) .
it allows us to collect the group of functions that corregppon 17ace Size) to the manageable sizes of the execution pat-
to different feature-families. Finally, based on inspegti (€S (Average Pattern Size).
the source files of Xfig, we measure the structural cohesion ~ Structural evaluation. For each feature family, in
of corresponding source files, as well as the feature func-Table 2 we inspect the Xfig source files that define the func-
tionality scattering of the feature families under studiieT tions that implement the corresponding logical modidie
results of this evaluation are presented in Table 3. of that feature family. The results of measuring the struc-
In the followings, we discuss the important properties tural cohesiorsCy , (1) of these files are presented in Table
of the proposed pattern based dynamic analysis techniqué. These results indicate that fileedlipse has high cohesion
using the Xfig case study. with respect to logical module of feature famiilipseand
files ecopy, and emove are also highly cohesive with re-
Mapping logical modules onto structural modules ~ spect to feature familCopy However, study of the feature
Table 1 demonstrates the results of experimentation withfunctional scattering measures allows us to better inégrpr
Xfig tool to reveal the core functions for two Xfig feature the characteristics of these logical modules. For example,
families. We focus on drawing a figure in the ellipse the case oEllipsea portion of the logical modul€s, is lo-
family (including circle and ellipse) such that each figure cated in a large structural moduleelastic which results in
can be drawn in two different ways, i.e., by-radius and @ high functional scattering measure. Whereas, in the case
by-diameter. Furthermore, we expand our experimentsOf Copyfeature family, the logical module almost covers
on editing operation of the Xfig tool (i.e., copy graphical two structural modules eopy and emove which indicates
objects). The extracted logical modules are shown in Tablelow scattering.
1 and according to the Xfig naming convention it is clear ~ We also adopt a minimum threshold value of 10% in or-
that the logical modules truly reflect the core functions of der to consider a structural module in the calculation of the

the feature families. above measurements. The results in Table 2 are promising
in the sense that they reflect meaningful measures with re-
Focusing on the important sub-traces spect to the sizes of logical and structural modules shown.

Table 2 represents the attributes of a group of feature-Regarding the results of our structural evaluations, we can
specific scenario sets that we use in the analysis procesgredict high maintenance activities for any change tdghe
This table illustrates a major characteristic of the pragbs lipsefeature family. Similarly, changes to ti@opyfeature
dynamic analysis with regard to reducing the scope of the family would not propagate throughout the system which
analysis from huge sizes of the execution traces (Averageindicates less maintenance activities.

Feature Specific Number of Average Average Number of Average
Family Feature of Xfig | Different Scenarios | Trace Size | Pruned Trace Size | Extracted Patterns | Pattern Size
Circle-Diameter 10 7234 2600 46 33
Draw Circle-Radius 10 8143 2463 48 32
Ellipse Ellipse-Diameter 10 6405 2536 41 37
Ellipse-Radius 10 7351 2549 39 35
Move Objects 4 11887 3166 31 53
Copy Copy Objects 4 11460 3269 37 50

Table 2. Results of execution trace extraction and executio

n pattern mining for 2 Xfig feature families.

Feature Family | Contributed | [Fm[| [Fm N Fo,| | Structural Cohesion | Functional Scattering
Dy File (m) SCp,, (m) FS(®4)
d_ellipse.c 16 12 75%
Ellipse u_elastic.c 67 8 12% 57%
e_copy.c 5 3 60%
Copy e_move.c 4 3 75% 32%

Table 3. Structural cohesion and feature functional scatte

8. Conclusions [5]
In this paper, we proposed a novel approach to dynamic
analysis and structural assessment of a software systém tha
takes advantage of repeated patterns of execution traates th
exist within the executions of a set of carefully designed
task scenarios. The proposed approach benefits from the
discovery nature of data mining techniques and concept lat-
tice analysis to extract both feature specific and common 7
groups of functions that implement important features of
a software system. The resulting execution patterns pro-
vide discovery of valuable information out of noisy execu-
tion traces. The proposed approach is centered around a se{8]
of task scenarios that share a specific system feature and
introduces a means for measuring the impact of individual
features on the structure of the software system. The pro-
posed technique has been applied on a medium size interac-
tive drawing tool with very promising results in extracting
both feature specific and common functions. Moreover, the
level of “structural cohesion” and “feature functional sca
tering” are measured that provides a way for assessing thf{lO]
structure of the experimented tool.

(6]

9]

References
[1] Xfig version 3.2.3. http://www.xfig.org/. [11]
[2] R. Agrawal and R. Srikant. Mining sequential pat-
terns. In Proceedings ¢EDE '95, pages 3—-14, 1995. [12]

[3] A. Beszedes. Union slices for program maintenance.
In Proceedings afCSM '02, pages 12-21, 2002. 13]
[4] G. Birkhoff. Lattice Theory American Mathematical
Society, 1st edition, 1940.

ring measures for 2 Xfig feature families.

M. Crochemore. An optimal algorithm for computing
the repetitions in a wordnformation Process Letters
12(5):244-250, 1981.

T. Eisenbarth, R. Koschke, and D. Simon. Derivation
of feature component maps by means of concept anal-
ysis. In Proceedings dESMR '01 pages 176-179,
2001.

] T. Eisenbarth, R. Koschke, and D. Simon. Locating

features in source coddEEE Transactions on Soft-
ware Engineering29:210 — 224, March 2003.

M. ElI-Ramly, E. Stroulia, and P. Sorenson. Recover-
ing software requirements from system-user interac-
tion traces. In Proceedings BEKE '02; pages 447—
454, 2002.

K. B. Gallagher and J. R. Lyle. Using program slicing
in software maintenancéEEE Trans. Software Eng.
17(8):751-761, 1991.

C. Lindig and G. Snelting. Assessing modular struc-
ture of legacy code based on mathematical concept
analysis. In Proceedings BESE '97, pages 349-359,
1997.

R. S. PressmarSoftware Engineering, A Practitioner
Approach McGraw-Hill, third edition, 1992.

M. Siff and T. W. Reps. Identifying modules via con-
cept analysis. In Proceedingsl@fSM '97, pages 170-
179, 1997.

OC. Systems. Aprobe version 4.2 for unix, 2003.

