
A MODULAR EVENT-BASED ARCHITECTURE FOR WORKFLOW SYSTEMS

Mehran Najafi and Kamran Sartipi
Department of Computing and Software, McMaster University, Canada

{najafm, Sartipi}@mcmaster.ca

ABSTRACT
Real life work processes are dynamic and much richer in
variation to be expressed by typical static workflow
models. Two conflicting goals to be addressed include:
flexibility to handle changing situations, and simplicity to
design workflows that can be understood and
implemented efficiently. This paper addresses these two
issues by introducing a novel architecture for workflow
systems. In this architecture, a workflow is defined in
terms of modules and templates. Modularity provides
simplicity and reusability for a workflow system. In our
approach, problem independent modules are adopted for a
special workflow system by placing them in problem
dependent templates. Also different users in the system
can interact with the workflow to make appropriate
changes via events. Modules and templates have their
own event handlers that allow them to be modified based
on changes in user requests or situations. We illustrate
these features in our architecture using two case studies,
one in healthcare domain and another in a banking
system.

KEY WORDS
Modelling; Flexible Workflow; Event-based Architecture;
Modular Architecture; Intelligent Workflow.

1. Introduction
A workflow is a set of ordered steps consisting of tasks,
data and resources (human or machine) in order to
achieve a goal [1]. A workflow management system
(WFMS) is a system that defines, creates and manages the
execution of workflows on one or more workflow engines
[2]. The system is able to interpret the process definition,
interact with workflow participants and, where required,
invoke the use of other applications.
Workflows in a WFMS can be subject to change due to
different reasons, such as unforeseen errors, faults and
failures, new development, or administrative decisions
(e.g., process optimization, incorporation of new
resources, and modification of existing product lines).
These reasons may cause different types of workflow
changes, such as addition of a new task, deletion of an
existing task, and modification in order of tasks.
Workflow systems need mechanisms to make them
flexible and deal with those deviations.
In a small system, it is reasonable to show a workflow by
a dataflow diagram of single tasks. However, in a more
complex system, modeling workflow by using only
dataflow constructs can quickly lead to overly complex

workflows that are hard to understand, reuse, reconfigure,
maintain, and schedule. Modularization is a software
design technique that divides a large system into a
number of smaller and manageable parts, namely modules
[3], [4]. Each module is designed individually where
different modules can be combined to form a larger
module. One of the most advantages of modularization is
its reusability.
In this paper, reusability and flexibility in workflow
systems are the main objectives. We address reusability
by introducing modules and workflow templates.
Modules are problem independent and can be used in
different types of workflows. On the other hand,
workflow templates are designed for individual processes
and contain customized modules. In our architecture, we
use events and event handlers to provide flexibility and
dynamism for the workflows. Event handlers of modules
and workflow templates are triggered by events and can
make changes in the order or content of steps in a
workflow.
Also, we introduce a consistency checking mechanism
that prevents any changes that may invalidate the
workflow. This consistency checking would become very
important when we allow the users to design events and
event handlers.
The organization of this paper is as follows. Related work
is discussed in Section 2. The proposed architecture and
its details are discussed in Section 3. Two case studies in
the healthcare domain and banking system are explained
in Section 4. Finally, the conclusion and future work are
discussed in Section 5.

2. Related work
Current research in workflow systems concentrates
primarily on making the workflows flexible with respect
to the changes in processes.
The dynamism in workflows has been studied using
exception handling techniques [9], [10] and [11]. In these
approaches a workflow is designed in a regular style and
any changes in a workflow system, presumed or un-
presumed, is considered as an exception and is handled by
using one of the exception handling methodologies. The
main difference between our proposed architecture and
these approaches in the case of change handling, can be
addressed by differences between “events” and
“exceptions”. An exception is usually raised to signal
exceptional situations like errors and failures, while in an
event based system we concentrate on interaction between
users and systems in all situations. In other words, our

event based architecture receives all possible and related
events from the users, and the system evolves accordingly
as the process progresses. Our architecture supports
exceptions as a special type of events.
A mathematical model for dynamic structural change
algorithm in workflow systems is introduced in [8]. In this
method changes are divided into two categories: changing
the structure of the workflow procedures, and changing
the workflow in the middle of executing procedures. This
model seems to have scalability problem and hence would
not be applicable for complex workflows.
Dividing a workflow into independent parts (namely
components) to make it easy to understand and reuse, has
gained more attention recently. In [13] the problem of
combining dataflow and control-flow is addressed for
scientific workflows. Generic behavioral specifications
(i.e., controlflow) in workflows are encapsulated in
templates. Templates are separate components and thus
can be easily reused in other workflows. Also templates
can contain subcomponents. The notion of template in
this approach is different from our definition of template.
We consider two types of components: problem
independent component as module and problem
dependent component as workflow template. Workflow
templates are designed for specific organizational
activities while modules are reusable in different
workflows.
Due to the variety of changes that can be applied on a
workflow, correctness and verification of workflows are
crucial. During the changes, a workflow must not enter an
incorrect state after a predicated or unpredicted change. In
[9] a foundation set of constraints for flexible workflow
specifications are developed. The authors claimed that the
constraints should optimally balance the flexibility and
control requirements. However, this method and other
methods that attempt to find process model for workflows
[10] have introduced overheads since they need to import
all modified nodes in the workflow. In our architecture,
by equipping each module with simple constraints, the
workflow will be guaranteed to be valid after authorized
changes.
In the proposed architecture that will be discussed in the
next section, we model each workflow based on its
relevant events. Combination of events and
modularization provides flexibility, reusability and
consistency in workflows.

3. Proposed Architecture
In this section, we present an overview of our proposed
architecture with focus on the relevant issues and the
dynamism of modules and templates. Further, we discuss
events and event handlers and different types of
constraints in the architecture. Finally, we elaborate on
workflow consistency.

3.1 Architecture Overview
Figure 1 illustrates different parts of the proposed
workflow architecture.

• A workf low represents a set of modules with
predefined orders among them. A workflow is
modeled by a workflow template that is a collection
of customized modules for a specific organizational
operation. A workflow template (or simply a
template) also establishes data flow and control flow
connections among the template's modules.

• A module is a container for a set of tasks whose order
of executions can be changed by receiving events.
Modules are designed individually and are
maintained in the module repository containing a set
of reusable modules. A module can be placed either
in a template as a part of the current workflow
solution, or in a module repository to be reused. Each
module has a collection of shared data that maintain
the state of the module.

• An event is any information that is provided by the
environment (user or system) and can change the
current workflow solution.

• An event handler is a program that receives events
from the environment and modifies the current tasks
(or modules) within a module (or template) by
consulting the state of the module (or template)
accordingly. In general, a module or template
contains several event handlers. An event table
presents the relevant events in the architecture along
with their corresponding event handlers.

• A task is an atomic entity that represents an
indivisible functionality that is performed within a
module. A task can have optional constraints in terms
of pre-conditions, post-conditions, and invariants on
its operation. The execution of a task may change the
state of the module through module's shared data.
This state is used by the event handlers to make
changes in the execution order or the number of the
module tasks.

A template uses its event handlers to customize its
modules or import new modules from the repository to
use for the modified workflow solution, provided that the
imported modules preserve the template or module's
consistencies. Similarly, the deleted modules from the
template are returned back into the repository. The
WFMS uses the event handlers of the modules and
template to generate a flexible workflow. The operations
of the WFMS for this architecture are as follows.
• Initialize the workflow template by using a number

of modules in a predefined order (according to the
default or general case of the workflow.)

• Receive events through interaction with the users and
the environment.

• Change the current workflow by adding, removing,
or reordering the modules in the template, using the
template event handlers.

• If some changes are needed within a module, the
template transfers the event to the proper module,
where the module event handlers make appropriate
changes on the internal workflow of the module. The
module event handler can add or remove a task in a
module, as well as reorder the tasks.

Figure 1: Different parts of the proposed event-based workflow architecture.

The major difference between event handlers
corresponding to a module and to a template is the level
of abstraction, where the former deals with details of an
operation, and the latter adds or deletes major business
functionality.

3.2 Workflow dynamic behavior
A template acts as a coordinator for the workflow
modules by importing, re-ordering, and deleting modules
from the workflow. Consequently, it provides flexibility
and dynamism for the generated workflow. The workflow
evolves through receiving events and adjusting itself to
satisfy the requested operation by the events. This is
achieved through a set of constrains for modules and tasks
that allow the WFMS to modify the workflow ingredients
and to keep the workflow consistency. These constraints
are as follows.
1. Precondition: conditions that must be met before

execution of a module or task.
2. Postcondition: conditions that are guaranteed to be

met after the execution of a module or task.
3. Invariant: constraints that control the correct

execution of a module or task.

 Figure 2: Constraints for tasks and modules.

A sequence of modules in a template (or tasks in a
module) is called valid, if it preserves the constraints that
are defined for each module (or task) based on their
specification. Figure 2 presents the above constraints in a
module. The case studies in Section 4 provide examples
on the use of constraints.
Events are generated by the environment in the form of
specific information. These events trigger the module (or
template) event handlers, where the event handlers decide

whether the required action should change the order of the
modules within the template (i.e., high-level
modification) or change the order of tasks within a
module (i.e., low-level modification). In the first case, the
event is consumed by the template event handler, whereas
in the second case the event is forwarded to the
corresponding module event handler to react upon it. The
template events are categorized into two types:
• Specific transaction, where the transaction (as event)

refers to a valid and high-level operation in the
corresponding business process, e.g., a specific
mortgage package request in a banking system.

• Module - l eve l , which will be directed to the
corresponding module as defined below.

Similarly, the module events are categorized into three
types:
• User interaction, represents the general case where a

user intends to change the workflow based on their
choices and preferences. For example, when a patient
could choose between a daily tablets and two
monthly injections.

• Exception, in the form of unexpected input data to a
module that causes the corresponding event handler
to change the module workflow and use specific
tasks to handle the situation. For example, when a
patient gets sick by another type of disease in the
course of treatment for his/her current disease.

• Reflexive task, refers to the event that is caused by the
environment's reaction to the result of a task
execution. For example, in the task of prescribing a
medicine by a physician, each side effect of the
medicine is considered as a reflexive event where the
assigned event handler catches the event and
modifies the treatment workflow.

In the proposed architecture most of events are of type
‘user interaction’ and hence they are suitable for domains
that many factors can change the general workflow (e.g.,
healthcare domain as it is a dynamic environment).
The dynamic behavior of the proposed workflow
mechanism is modeled in the form of ``event [condition]
/ action'' which allows the workflow to change its state
and evolve. In Figure 3 ``event'' is a template event or a

module event, as defined above. A condition is modeled
as ``pre condition”, ``post condition” or ``invariants” and
is evaluated by comparing the state of the module (or
task) before and after the modification by the event
handler.

Figure 3: Event handling in the proposed architecture.

The action is the modification of the workflow that
conforms with the module or task's constraints. In other
words, if the condition is true, the change is accepted and
workflow evolves to the new state, otherwise the change
is ignored and the workflow remains in its current state.
The possible changes to a workflow according to a
``template event” are as follows:
• Adding a module to the workflow from the repository

of the reusable modules.
• Removing a module from the workflow (a copy of the

module still exists in the repository).
• Changing the module interconnections (dataflow and

control flow) with other modules in the workflow.
• Delivering the module events to the proper modules

so that they can modify themselves accordingly.
Similarly, the possible changes to a module according to a
``module event” are as follows: i) introducing a new task
to the module or deleting an existing task; ii) changing the
execution order of tasks; iii) changing the description of
tasks, and; iv) sending events to the workflow template to
request modifications in other modules.

3.4 Consistency in the architecture
It is important to ensure a workflow remains valid after a
change. Consistency for this architecture is defined as the
correct positions of reusable modules in the template as
well as preserving the main goals of the workflow
through modifications. In this architecture, we confine
changes in workflow to modifications that are done by
event handlers. Each event handling is defined in terms of
conditions and actions; i.e., if the condition is true for a
modification it will be performed. For each type of
possible modification, we define specific conditions.
These conditions are in terms of architectural constraints
in order to preserve the workflow consistency.
Consistency checking consists of data flow and control
flow checking for templates and modules. Data flow
represents the flow of data in the workflow and if the
connections between modules and template are complete
data flow consistency is satisfied (i.e., other modules or
the template provide all modules’ input data). If a part of
input data for a module is eliminated by a modification
(i.e., delete or change order) the event handler must
provide its input via other sources in the template.
We assume workflow constraints are true before applying
any changes; also adding reusable modules to an empty
template can generate an initial workflow.

Control flow consistency checking follows the data flow
consistency checking. Control flow conditions for
templates that include adding a new module, deleting a
module and changing the order between modules are
illustrated in Figure 4. Sending and receiving events do
not change the structure of workflow and because the
workflow is valid before this action, the workflow will be
valid after it too. Hence, no consistency checking is
required. Control flow consistency checking within the
modules (i.e., adding, removing, and changing the
execution orders of tasks) are similar to those discussed
for the workflow template. As a general rule, the module
invariant must be satisfied after any changes.

4. Case studies
In this section, we present the application of our proposed
approach on modeling two cases of healthcare and
banking domains. Also some advantages of our
architecture in comparison with previous ones are
discussed in this section.

4.1 Case study 1: healthcare domain
The healthcare domain is an active area for developing
and using workflows [6], [7]. A simple workflow for
treatment of a muscle disease is shown in Figure 5 (top).
This treatment consists of two parts: Step 1: diagnosis
and drug prescription, in which the physician prescribes
drug X for the patient. Step 2: physiotherapy exercises, as
the follow up treatment after treatment 1. Each of these
two treatments can be considered as a separate module.
Their module specifications are illustrated in Table 1.
Also, each task may have its own constraints. An example
of task pre-condition is shown in the second task of the
physiotherapy treatment. In Table 1, a number that is
assigned to each event handler identifies their
corresponding event.
The nature of each treatment imposes some obligations or
considerations. For example, most drug prescriptions (i.e.,
task execution) have side effects on the patients and hence
the physician may decide to change the treatment method
by prescribing a different drug without those side effects.

Workflow consistency checking: According to Table 1
some of these consistency issues are as following:
• Since the pre-condition of module ``treatment by

physiotherapy” is satisfied by post-condition of
module ``treatment by drug X”, this combination is
consistent.

• In module ``treatment by drug X” the event handler
EH1 for event ``fever” is consistent if the dose of
drug X prescribed by physician is between the
LOWER and UPPER limits and also the ``new
prescribed duration for drug X” is according to the
pair (duration-of-applying-X, dose-D) in one of the
tasks, otherwise this change will not be applied on
the workflow.

Figure 4: Control flow constraints for workflow template

• For event ``strong headache” and its event handler
EH2, because the pre-conditions of module CT-scan
are satisfied, this module can be added to the
workflow. Figure 5 (bottom) illustrates this
modification.

• In module ``treatment by physiotherapy” the event
handler EH1 for event ``high heartbeat rate” is
consistent, because it decreases the time of vigorous
workout and increases the time of the moderate
workout, which is according to the module
invariant.

Therefore, each modification in the workflow is
consistent and the workflow remains consistent and valid.

4.2 Case study 2: banking domain
In the previous case study, we focused on “satisfying
constraints” and the mechanism of applying changes on
the workflow in order to keep it consistent. However, in
the current case study, we present how templates and
modules can collaborate through using events and event

handlers, in the context of a complete workflow for the
banking domain.
This workflow describes the process for applying,
receiving and paying back of a house mortgage. The
relevant modules to this workflow are defined in Table 2.
These modules are general and can be used in any
workflows in this domain or other domains. The template
for this workflow is shown in Figure 6.

4.3 Advantageous of the proposed architecture
Although these two case studies can be modeled with
other approaches, but the proposed architecture seems to
be more appropriate. Some of its advantages are:
1) Where several factors exist that can change a workflow
(e.g., healthcare domain), flexibility is inevitable. Design
of a static workflow and apply possible changes through
exceptions [5] can be one alternative to our architecture;
but in the case of a large number of changing factors,
(e.g., in a surgery operation) a lot of added exceptions
complicate the workflow and reduce its understandability.

Table 1: Module specification for two treatment methods
Module name: Treatment by drug X Module name: Treatment by physiotherapy
Pre condition:

• Physician diagnoses diseases A or B or C for the patient
Tasks:

1. Prescribe drug X with dose D1 for N1 weeks (or)
2. Prescribe drug X with dose D2 for N2 weeks (or)
3. Prescribe drug X with dose D3 for N3 weeks

Post condition:
• The patient must not have pain in muscles

Module invariants:
• LOWER LIMIT < dose of X< UPPER LIMIT
• The pair (duration-of-applying-X, dose-D) must match with one of

the pairs defined in Tasks 1 to 3.
Events:

• Each side effect of drug X is considered as an event:
o E1: fever
o E2: strong headache

Event Handlers:
• EH1: weaken the dose of X and increase the duration of using it in

the current task
• EH2: ask for a CT-Scan via adding its module into the template

Pre condition:
• The patient must not have pain in muscles

Tasks:
1. Moderate workout for M1 minutes
2. [Pre: the moderate step must be done] Vigorous workout for M2 minutes

Post condition:
• Null

Module Invariant:
• The duration of vigorous workout must be less than the moderate

workout
Event:

• E1: high heartbeat rate
Event Handler:

• EH1: change the remaining time of the current vigorous workout to the
moderate workout

Also some situations impose major modifications in a
workflow (e.g., addition a new module in the first case
study) according to definitions and applications of
exception and event, the latter seems to be more
reasonable.
2) In domains such as banking, where there are several
dependent and independent workflows, the benefit of
modularization is clear. These modules, as parts of a
workflow, need a mechanism for interaction. Sending and
receiving events under supervision of a workflow
template that customizes independent modules and
considers a workflow as a whole body, can improve
traditional methods such as [13], which allow independent
modules to communicate without any specific manager.
3) In the case of consistency checking, defining proper
constraints for each task and module is simpler than
dealing with complex equations, which describe the
whole process model, as defined in [9].

5. Conclusions and Future Work
In this paper, we presented a new architecture for
workflow evolution. The architecture takes advantage of
the modularity concept in terms of modules and templates
that generate reusable and understandable workflows.
Also, it provides dynamism and flexibility in workflow
systems by employing a mechanism based on event and
event handling. In some cases, designing a complete
workflow, which provides solutions for all possible
operations, is almost impossible. With this architecture, a
partial workflow is designed as a template, and the user is
allowed to define and add new events, event handlers, and
modules to the workflow as long as the WFMS can
approve the consistency of the workflow after each
modification. The future expansion of this architecture
would provide an intelligent WFMS that predicts next
states and possible events for each instance of the
workflow in the execution time.

References
[1] W. Aalst & K. Hee, Workflow managment: models,
methods, and systems: cooperative information systems,
(The MIT Press, 2004).

Figure 5: Initial and modified workflow template
for the treatment in case study 1.

[2] A. Cichocki, A. Helal, M. Rusinkiewicz, & D. Woelk,
Workflow and process automation: concepts and
technology (Kluwer Academic Publishers, 1997).
[3] M. Aquin, M. Sabou, & E. Motta, Modularization: a
key for the dynamic selection of relevant knowledge
components, ISWC 2006, Georgia, USA, 2006, 289-314.
[4] L. Cardelli, Program fragments, linking, and
modularization, Symposium on Principles of
programming languages, Paris, France,1997, 266–277.
[5] Z. Luo, A. Sheth, K. Kochut, & J. Miller. Exception
handling in workflow systems, Applied Intelligence, 13
(2), 2000, 125-147.
[6] N. Krishnakumars & A. Sheth. Managing
heterogeneous multi-system tasks to support enterprise-
wide operations, Journal of Distributed and Parallel
Database Systems, 3(2), 1995, 155-186.
[7] J. Eder & W. Liebhart, Contributions to exception
handling in workflow systems, EDBT Workshop,
Valencia, Spain, 1998, 399-412.
[8] W. Aalst, Generic workflow models: how to handle
dynamic change and capture management information,
IECIS, Washington, USA, 1999, 115–126
[9] S. Sadiq, M. Orlowska, & W. Sadiq. Specification and
validation of process constraints for flexible workflows,
Information Systems, 30 (5), 2005, 349–378.
[10] P. Mangan & S. Sadiq. On building workflow
models for flexible processes, Australian Computer
Science Communications, 5,2002, 103–109.

•
Figure 6: Different parts of the proposed architecture for house mortgage

Table 2: Module specification for reusable modules in the banking domain
Module name : Customer qualifying Module name: Indicate Customer's Monthly Income (ICMI)
Pre condition :

• True
Tasks:

• Check customer credit
Post condition:

• The result of the qualification checking.

Pre condition :
• True

Tasks:
• Add all customer's salaries for his/her part time and full time jobs

Post condition:
• The customer's monthly income is determined.

Module name : Compute the Affordable Monthly Mortgage (AMM) Module name: Payment Process

Pre condition :
• The customer's monthly income is determined.

Tasks:
1) Multiply customer's gross income by C=0.28.
2) [Pre: Task 1] Subtract the monthly debt payments.
3) [Pre: Task 1] Subtract the monthly cost for property taxes and home
owners insurance

Post condition:
• AMM is determined

Module invariants:
• C must be less than 0.36

Events:
• E1: The customer has other debt.

Event Handlers:
• EH1: Set C=C+0.02 and start from Task 1.

Pre condition :
• Down payment was determined
• Monthly payment was determined
• Interest rate was determined

Shared data:
• Remaining loan

Tasks:
• Reduce the paid amount by customer from the remaining loan variable.

Post condition:
• The loan is repaid

Events:
• E1: Customer does not pay any amount.
• E2: Customer pays less than the monthly payment.
• E3: Customer pays more than the monthly payment.

Event Handlers:
• EH1: According to the bank policy (E.g., increase the interest rate)
• EH2: According to the bank policy
• EH3: According to the bank policy

Module name: Home Evaluation Module name: Choose a Mortgage Payment Plan
Pre condition :

• True
Tasks:

1) Evaluate the location
2) Evaluate the condition
3) [Pre: task 1 and 2] Evaluate the value

Post condition:
• The actual value of the house is determined.

Pre condition :
• Down payment was determined.
• AMM was determined.

Tasks:
1) Determine loan duration.
2) [Pre: Task 1] Determine the annual interest rate.
3) [Pre: Task 2] Determine the monthly payment.

Post condition:
• Monthly payment is determined.

Module invariants:
• Monthly payment must be less than AMM.

Module name: Foreclose a house process Module name: Set a Down Payment
Pre condition :

• The customer has not paid the payment for N months.
Shared data:

• N
Tasks:

• According to the bank policy.
Events:

• E1: The same customer wants to buy the house from the bank again.
Event Handlers:

• EH1: According to the bank policy

Pre condition :
• The customer was qualified.
• The loan request amount was determined.

Tasks:
• The customer suggests an amount A.

Post condition:
• Down payment amount is determined.

Module invariants:
• A must be larger than 5 percent.

Events:
• E1: A is less than 20 percent.

Event Handlers:
• EH1: Ask for private mortgage insurance.

[11] K. Hee, H. Schonenberg, A. Serebrenik, N. Sidorova,
& J. Werf. Lecture notes in computer science: adaptive
workflows for healthcare information systems, (Springer
Berlin / Heidelberg, 2008).
[12] H. Fu-Shiung. Context-aware workflow driven
resource allocation for e-healthcare, International

conference on e-Health networking, application and
services, Taipei, Taiwan, 2007, 34–39.
[13] S. Bowers, B. Ludascher, A. Ngu, & T. Critchlow.
Enabling scientific workflow reuse through structured
composition of dataflow and control-flow. 22nd ICDE
workshop, Washington DC, USA, 2006, 70–83.

