
Noname manuscript No.
(will be inserted by the editor)

Modeling Service Representatives in Enterprise Systems
using Generic Agents

Mehran Najafi · Kamran Sartipi

Received: date / Accepted: date

Abstract As a common practice in business enterprise

systems, a service provider delegates a human agent to

a client site to serve the client. On the other hand, in

a computerized business application, enterprise orga-

nizations adopt Service-Oriented Architecture (SOA),

where an enterprise agent is modeled as a software agent

that cannot be transmitted efficiently by service mes-

sages. In the proposed approach, we extend the tra-

ditional architecture of SOA implementations to sup-

port generic and lightweight agents that reside at the

client site. These agents, that we call ”Service Repre-

sentatives”, can be customized and trained based on

the provider generated role description and knowledge

to perform their assigned tasks. In addition to provid-

ing innovative applications, such a technique allows for

more sophisticated features such as maintaining client

privacy and separating the functionality of the service

and its delegated agent. To indicate the variety of roles

that can be done by the service representative, we pro-

vide three case studies to show how a local and generic

agent can be customized by different providers to per-

sonalize financial advice, apply medical guidelines, and

verify credit card transactions.

Keywords SOA · Resident Agents · Generic Agents ·
Autonomous Agents · Knowledge Management ·
Context-aware Services

Mehran Najafi
Department of Computing and Software
McMaster University
Tel.: +1-905-920-4282

E-mail: najafm@mcmaster.ca

Kamran Sartipi
Department of Computing and Software

McMaster University

Tel.: +1-905-525-9140 ext. 26346
E-mail: sartipi@mcmaster.ca

1 Introduction

Enterprise systems [22] are strategic communication as-

sets for large organizations such as banking, health-

care and insurance companies. An enterprise system is

tightly coupled with the internal structure, processes,

and business model of an organization. Architectures

for enterprise systems must be featured by major non-

functional qualities such as: simplicity, flexibility, main-

tainability, reusability, and decoupling technology from

functionality.

Service-Oriented Architecture (SOA) [14] is a high-

level and technology-independent concept that provides

architectural blueprints for enterprise systems. SOA-

based architectures focus on dividing the enterprise ap-

plication layer into services where each service has a di-

rect relationship with a business functionality of the en-

terprise. In SOA, enterprise related tasks are addressed

by interactions between service clients and providers

through services. A service provider registers its ser-

vices in a service registry. A service client inquires the

service registry to receive the description of an appro-

priate service from a provider to satisfy its needs [15].

Further on, the requester and the selected provider(s)

may negotiate about the service usage terms [18]. After

agreement between client and provider, the client in-

vokes the service. Also, different services can be either

composed to serve a client [8], or customized based on a

client’s context [4].

In real-world, a business provider usually sends its

agent or personnel (e.g., as representative, installer, and

repairer) to its client site to perform the required ser-

vices. Accordingly, several organizational units in enter-

prises (e.g., customer service, dealership, training unit,

and delivery unit) require to send or employ agents to

serve the clients. Therefore, to provide a comprehensive

2

model of enterprises, SOA needs to model enterprise

agents efficiently. Lack of this model may result in lim-

iting the applications and functionality of SOA based

systems.

XML-based web services are the dominant platforms

for implementing SOA. A web service is defined by the

messages it exchanges. That is, a service client sends a

request message to a (web) service provider. Then, the

web service processes the request message and replies

by a response message. An enterprise agent can be mod-

eled as an autonomic agent [12] that is a computer pro-

gram which cannot be transmitted by communication

messages efficiently.

In this paper, we extend the traditional architecture

of SOA implementations to enable enterprise systems

to employ generic agents as their service representa-

tives. Instead of sending different agents to the service

client, we maintain a lightweight and generic agent at

the client site that can be customized to act different

roles and be trained to perform different tasks on behalf

of the service provider. The customization and training

are performed based on the role description and knowl-

edge which are generated by the service provider and

can be efficiently transmitted by the messages. The pro-

posed approach significantly enhances the capabilities

of the current SOA services. Since the proposed agent

is local to the service client, it can customize service re-

sponses based on the client’s context; this mechanism

reduces the security and privacy concerns by eliminat-

ing the need to send client’s private information to the

provider. Finally, the proposed agent represents a ser-

vice provider at the client site, therefore, we call this

agent Service Representative (SR).

The organization of this paper is as follows. Related

work is discussed in Section 2. Service Representative

is introduced in Section 3. The proposed architecture

and its details are discussed in Section 4. Section 5 in-

troduces the developed prototype system. Three case

studies in business, health care, and insurance domains

are explained in Section 6. The applications and chal-

lenges of the proposed approach are discussed in Section

7. Finally, conclusions and future work are discussed in

Section 8.

2 Related Work

Web services have had quick growing success and broad

acceptance by the enterprise systems. However, there

are still a number of impediments that limit the wide

applications of web services in industry. Moreover, agent-

based techniques seem to be proper solution for en-

abling dynamic collaboration among e-Business systems.

Therefore, there are growing demands for using agents

to evolve the current architecture of SOA in several as-

pects as follows:

1. Agents as services. The Intelligence Service Sys-

tem (ISS) [3] is introduced as a framework for in-

tegrating expert systems into service oriented land-

scapes. In this framework, a computerized expert

system (intelligent agent) acts as a service, which re-

ceives requests (including query and training data)

from business applications. By using the training

data, the expert system is trained and returns its re-

sponse to the query. Since agent platforms [23] and

web service platforms have similar components (reg-

istry, descriptor, communication protocol and se-

mantic language), AgWebs architecture [16] is pro-

posed to provide interoperability and interaction be-

tween them.

2. Services as agents. In ASMF [6] a network of web

services is modeled by a number of autonomic agents

(each service is wrapped into an agent). Further-

more, these agents interact with each other to form

service relationships. In addition to service agents,

service brokers are designed as autonomic elements.

In [27], a role-based architecture is adapted to facil-

itate the service definition and relationship among

SOA components.

3. SOA related tasks by employing agents. Agents

have been used to facilitate SOA related tasks such

as service composition and service negotiation. In

[17], during a service composition process, software

agents engage in conversations with their peers to

agree on the web services that participate in this

process. Moreover, agents have been proposed as

coordinators for web services. For example, [28] in-

troduces a service processing agent that searches,

selects and invokes service components for a ser-

vice composition, dynamically and according to the

user’s context.

4. Agent-based enterprise modeling. Integration

of agents and web services has been proposed to

model the business aspects of enterprise systems. In

[26], each role or major function of an enterprise sys-

tem is considered as an agent (e.g., supplier agent,

producer agent, cooperative agent, information ser-

vice agent, and customer service agent). Then each

agent is wrapped into a web service. The agents

combined with web services can easily communicate

with each other. As another example, a distributed

market place is modeled by agents [13]. In this ap-

proach, service providers and clients are considered

as sellers and buyers, where an agent models each

buyer or seller. These agents can negotiate with each

other until they reach an agreement.

3

Fig. 1 Proposed extended SOA model. The shaded area repre-

sent the non-essential component (service registry) in the SOA
model. This model also supports the traditional service invoca-

tion where the service provider returns the service response di-

rectly to the service client
.

In the proposed model, we address a new application

of collaboration between agents and services. The pro-

posed generic agents are in charge of delivering the func-

tionality of service providers, however, these agents are

located at the client site.

Mobile agents can physically travel across a network

and perform tasks on different nodes. Agent mobility

requires facilities that convert an agent into a form

suitable for network transmission (e.g., messages) and,

on the receiving end, allow the remote system to re-

construct the agent. Java’s object serialization accom-

plishes this conversion and reconstruction. Concordia

[25], Odyssey [24], and Voyager [19] are examples of

mobile agent frameworks based on java. Also, mobile

agents are suitable to be formally represented using

pi-calculus [7]. There are several security and privacy

issues to be considered in mobile agent-based comput-

ing. Viruses and malicious attacks are other possible

vulnerabilities of mobile agent systems. Mobile agent

architectures also suffer from low efficiency as they need

to send the entire computer program or process. More-

over, flexibility and interoperability concerns must be

considered in these approaches. These issues motivated

us to customize generic resident agents as opposed to

send mobile agents.

3 Service Representatives

We propose to extend the major components of SOA

(service provider, service requester, and service registry)

with the service representative, as it is shown in Fig-

ure 1. In this section, first we address the limitations

of the existing SOA-based technologies to model enter-

prise services. Then, we introduce the notion of service

representative that can be implemented using resident

generic agents to facilitate dealing with these limita-

tions.

3.1 Existing Technology Issues

As mentioned earlier, enterprise services are modeled

based on message exchanges. A service is typically de-

fined using WSDL technology that represents the re-

quest message that the service provider receives and

the response message that it generates. This message-

based structure imposes limitations on enterprises that

aim to use SOA to provide their services. Some of these

limitations are listed below.

Functionality limitation. There are several types

of services that can not be modeled efficiently by mes-

sage exchanges, such as:

– Supervisory service which is called to control client

resources. A set of provider generated messages can

not perform this task since it needs an executable

platform at the client site that has access to the

local resources.

– Event-triggered service which is called by a client

and the service will wait until a predefined event

occurs at the client site. Implementing these ser-

vices by the message exchange technology requires

a permanent connection between the provider and

the client.

– Advertising service which introduces other services

in the enterprise while performing its task. A message-

based service sends a response message to the client

based on the query in the request message, without

any opportunity to advertise other services. Even if

the provider embeds advertisement messages in the

response message, the client cannot extract them

since it lacks the required mechanism to predict re-

ceiving advertisement messages.

Privacy and security issues. Since web services

process client requests at the provider site, the client

may need to include their personal information in the

request messages. This may cause significant privacy

and security breaches.

Needs for expertise. As providers pack their re-

sponses in the form of messages, the interpretation of

these messages is the client’s task. So, it is likely that a

client lacks enough expertise and knowledge to under-

stand and use the service responses. This situation gets

worse as a client has to deal with different providers in

different domains.

4

Service competition. Message-based web service

providers are usually passive in dealing with enterprise

issues. They register the descriptions of their services

into a service registry, then it will be the responsibility

of service clients or coordinators to discover and com-

pose those services. Active providers are expected to

address the enterprise issues more efficiently. For exam-

ple, in the case of service discovery, instead of analyzing

the service descriptions to find the best service for the

client’s needs, the candidate services can compete and

the client simply chooses the winner.

Stateful services. According to the SOA’s require-

ment, web services should be designed to work in a

stateless fashion. However, in some situations message

exchange technologies force developers to implement

stateful services. For example, efficient service negoti-

ation techniques ask the providers to keep track of a

negotiation process initiated by a client.

3.2 Generic Agent as Service Representative

Sending agents as service responses (mobile agents) could

facilitate dealing with the above limitations, however

the message-based structure of web services does not

allow providers to dispatch their agents efficiently. We

propose an extension to the existing SOA architecture

which utilizes the concept of “generic agents” that are

resident at the client site and are customizable and

trainable for different roles. The proposed architecture

requires that the service provider only transfers essen-

tial messages to customize and train a generic agent,

as opposed to sending the entire agent. Since the agent

executes at the client site and has access to the local

resources of the client, it can potentially violate the

client security and privacy. To prevent this, we limit

the power of the agent by restricting the resources that

it can access.

The proposed architecture organizes the contents of

the communication messages into three segments “data”,

“information”, and “knowledge” [29], where: i) data is

defined as raw fact; ii) information is the result of apply-

ing knowledge on data; and iii) knowledge is an under-

standing of how to process data to produce informa-

tion, based on evidences, experience and insight that

can be represented as guideline, decision-flow or pat-

terns of data.

In this context, the service client asks to receive in-

formation from the service provider by sending a re-

quest message. The service client may receive the re-

sulting information in a response message directly from

the service provider or indirectly through the service

Fig. 2 Relationship among Data, Information, Knowledge and
the Service Representative in the proposed model.

representative. Therefore, the proposed service repre-

sentative can be viewed as an agent that works in a

knowledge management environment illustrated in Fig-

ure 2. The service representative, that is modeled by a

resident generic agent, provides the following facilities

for the SOA architecture.

More sophisticated functionality. By introduc-

ing an executable platform at the client site, service

providers can offer innovative services. For example, a

service representative can be customized and trained

to advertise other provider’s services, control local re-

sources or be activated when an event occurs.

More privacy and security. As the service repre-

sentative has access to local resources at the client site,

the client does not need to send its personal data to the

provider in order to receive customized services. More-

over, we impose two constraints to preserve the client

privacy and security. First, the client determines local
resources that the service representative can access to

them. Second, the communication between the provider

and its agent is one way (from provider to the service

representative); which implies that the agent can not

return any of the client’s resources to the provider(s).

Local and trainable experts. A service provider

can train a generic agent to interpret its response mes-

sages in the forms that a client can understand. Also,

the agent can guide a service client on how to use the

service responses.

Active providers. When a generic service repre-

sentative is customized and trained, it can represent

its provider regarding its assigned role in performing

the enterprise related tasks. Popular and high-demand

tasks can be pre-defined as standard tasks to be dis-

patched to the generic agents. For example, in the case

of service discovery, after customizing generic agents by

different providers; they can compete on behalf of their

providers to find the best service for a client.

5

Fig. 3 Structure of an autonomous software agent, called

MAPE-K (monitor-analyze-plan-execute over a knowledge base),

proposed by IBM [2].

Stateless services. By employing the service rep-

resentatives, enterprise related tasks can be modeled

for stateless services efficiently. In other words, by as-

signing an agent to each client, providers do not need to

keep the state of each request. For example, in a service

negotiation scenario, a provider sends essential negoti-

ation skills to the service representative to negotiate

with the client about the terms of using the service.

An enterprise agent can be modeled as an autonomic

agent, shown in Figure 3, and hence can be defined

using a tuple of its components, as below:

– Sensors: act as the agent input devices and obtain

data from the system.

– Monitor: scans the sensed data, generated by the

sensors, to extract the relevant data.

– Analyzer: analyzes or modifies the monitored data

in a way that the agent can use them.

– Knowledge Base: contains knowledge sentences that

other agent components can use to perform their

tasks.

– Executor: processes the input data and generates the

output as information.

– Planner: acts as the brain or controller of the agent

that specifies how the executor generates outputs or

how and when the knowledge base can be used.

– Effectors: act as the agent’s output devices.

The generic service representative is defined based

on its generic components (generic sensors, generic mon-

itor, generic analyzer, generic execute, generic effectors,

and generic knowledge base). The agent planner (the

only concrete component) is in charge of concertizing

the generic components based on the provided role (or

role description) and knowledge (or role knowledge) to

perform the assigned task. The role description is a

list of the tasks, functions, or responsibilities, and role

knowledge is the required expertise that the service rep-

resentative needs to complete the described tasks and

responsibilities. The planner transforms a generic ser-

vice representative into a specific service representative

in two phases (customization and training) and then

executes the assigned task in the execution phase, as

follows.

1. Customization. In this phase, the planner sets up the

agent configuration (including SR sensors, effectors,

and executer) and creates an abstract process in the

SR executer based on the role description.

2. Training. In this phase, the planner uses the role

knowledge to train the customized agent for the as-

signed role. The role knowledge can be received from

the provider or/and extracted from the local knowl-

edge base. Consequently, the abstract process will

be completed to perform the specified tasks.

3. Execution. In this phase, the customized and trained

service representative receives the client’s local data

(via the sensors and monitors), adapt them (via the

analyzer), executes the created process to generate

the requested information (by executer), and deliv-

ers the information (via the effectors) to the client.

4 Extended SOA Architecture

In this section, we extend the typical architecture of

SOA implementation to enable service providers to em-

ploy the generic service representative at the client site.

The proposed architecture is illustrated in Figure 4 and

consists of three main components: service provider,

service client, and service representative. The message

transmissions among these components are as follows.

A service client sends a request message (data) to re-

ceive a service response (information) from a service

provider. In a simple model of communication (without

using the service representative), the provider’s infor-

mation layer receives and processes the request message

that contains client data and returns the resulting in-

formation back to the client application. This model

represents traditional web services. In an agent model

of communication (with using the service representa-

tive), the client request is processed at both provider

and client side as follows.

1. At the provider site, the customization and training

layers send a role description and required knowl-

edge to the service representative to process the

client data locally to generate the requested infor-

mation.

2. At the client site, the generic service representa-

tive receives the role description and knowledge seg-

ments and evolves into a customized service repre-

sentative. Then, it performs the assigned tasks on

the client local data that are available through the

communication channel.

6

Fig. 4 Proposed architecture. Based on the client’s request, the service provider generates a 3-segment response message to customize

and train a client-side generic agent as its representative to serve the client.

The specification for each component of this archi-

tecture is given in the following subsections.

4.1 Service Provider Model

In contrast to the existing SOA models whose service

response messages have only one segment (information),

the proposed model introduces service response mes-

sages with three segments (role, knowledge, and infor-

mation). Accordingly, the service provider consists of

three layers that are designed to work independently,

and each layer is responsible to provide one segment of

the response message, as follows.

Customization layer. This layer specifies a role

for the generic service representative to customize and

perform assigned tasks on behalf of the provider. First,

a role (e.g., negotiator, customizer, or adaptor) is as-

signed to the generic agent. The role can be deter-

mined explicitly, i.e., the client specifies it in the re-

quest message, or implicitly, i.e., the customization en-

gine predicts it based on the previous similar situations.

Then, this layer specifies the agent configuration for

the assigned role including the type and specification

of the required sensors, effectors, analyzer, and execu-

tor. Moreover, the role specification includes a process

model describing the order in which a series of steps

(called tasks) needs to be executed

The required knowledge for each step of the role

process can be provided either locally by the SR knowl-

edge base or remotely by the provider’s training layer.

Since the service provider can employ the service rep-

resentative for different roles, the roles configuration

and description are kept in the role database. Concep-

tually, this layer can be viewed as a technical support

unit in an enterprise organization that informs a tech-

nician their responsibilities about a customer or a prod-

uct. The layering structure of the proposed model im-

plies that the customization layer should be indepen-

dent from the knowledge layer. It is based on the fact

that technicians are assumed to be knowledgeable when

they are assigned some tasks. They only receive the

overall task description while their knowledge are pro-

vided from other sources, such as: education, training,

past experiences, or following strict guidelines.

Training layer. This layer generates the knowledge

segment of the response message, based on the knowl-

edge model specified in the customization layer. The

knowledge is provided using knowledge representation

techniques and is stored in the knowledge base.

Information layer. This layer essentially repre-

sents the service provider in the traditional model of

SOA, where the service provider receives a request mes-

sage from a client; processes its data; and returns the

result of the operation on data (as information) back to

the client via the information segment of the response

message. This layer provides the compatibility of the

proposed SOA model with the existing model.

7

Fig. 5 Example of a communication channel.

4.2 Service Client Model

A service client consists of a client application and a

communication channel, as follows.

Client application. This is a traditional client ap-

plication that generates and sends request messages to

service providers. The client application will receive the

information segment of the response message. This in-

formation can be either consumed directly or passed to

the service representative via the communication chan-

nel to be modified by the service representative. The

service provider publishes the required communication

channel schema for each client-side web service in the

service registry using WSDL documents. In order to call

a client-side web service, the client application needs to

put the client data in the communication channel based

on this schema.

Communication channel. This channel consists

of a number of ports that are connection links to the

internal resources of the client application, as well as the

means for the client application to receive the result of

the requested task through the service representative. A

client grants permission to the service representative to

read/write a number of its resources through this chan-

nel. The ports can be input, output, or input/output

(from the client point’s of view). Input ports can be

read by the SR sensors and output ports can be written

by the SR effectors. One instance of a communication

channel is shown in Figure 5.

4.3 Service Representative Model

As mentioned earlier, a generic service representative

is transformed into a specific service representative af-

ter customization and training phases. The agent then

modifies the client’s internal resources through the com-

munication channel. A service representative is modeled

by an autonomous structure as follows.

– The sensors and effectors are connected to ports in

the communication channel.

– The knowledge base contains the internal role knowl-

edge that is pre-loaded by the client or received from

external resources. The received knowledge from web

services can be stored to relieve web services from

sending them each time. Moreover, by storing basic

knowledge of a specific domain in the SR knowl-

edge base, we can develop domain-specific service

representatives where they can perform the domain

relevant tasks efficiently.

– The planner has functions to configure the agent

and a process engine to follow different steps of the

assigned role.

– The monitor and analyzer receive and convert the

sensed input data to a format that is understandable

for the agent.

– The executor contains one or more knowledge model

instances that are specified in the customization phase

and trained in the training phase.

In the execution phase, the service representative

performs its assigned role as follows: i) the sensors read

client data from the communication channel; ii) the

relevant data are extracted by the monitor and the

analyzer converts them into a proper format for the

service representative; iii) these input data are fed to

the knowledge models in the executor; iv) the trained

knowledge models will be applied to the data to gen-

erate the output results; and v) the results are written

back to the communication channel by the effectors.

4.4 Types of Supported Services

The proposed architecture is an extension to SOA, hence

it must cover the typical SOA services where there is

no need for the proposed service representatives. More-

over, the service representative can work in two separate

modes, therefore, the proposed architecture can model

three types of services, that are described below.

– Type 1. The service response only contains ”in-

formation segment” that is received by the client

application, while the role and knowledge segments

are empty. Type 1 includes typical web services pro-

vided by traditional service providers that do not

need to employ agents in order to serve the clients.

– Type 2. The service response contains ”role” and

”knowledge” segments that are received by the ser-

vice representative, while the information segment

is empty. Based on the role description, the service

representative applies the received knowledge to the

local client data and provides resulting information

as the service response for the client.

– Type 3. The service response contains ”role”, ”knowl-

edge”, and ”information” segments. In this case, two

scenarios are possible: (a) the service client uses the

received information and the service representative

performs its assigned task to provide additional in-

formation for the client; (b) the service client redi-

rects the information to the service representative

in order to be modified or used during the service

representative task execution.

8

Finally, because web services of Type 2 and Type 3

are executed at the client-side, we call them client-side

web services as opposed to web services of Type 1 which

are executed at the server-side.

5 Prototype System

To evaluate the effectiveness and feasibility of the pro-

posed extend SOA model, we developed a prototype

system of the proposed architecture including the ser-

vice representative as well as the extended service client

and provider. This prototype, namely SR version 1.0, is

developed based on J2EE 1.5 technologies and Apache

Tomcat 6.0 application server which can be used by the

service developers and clients to develop and invoke the

client-side web services, respectively.

The developed service representative has a built-in

Drools [20] process engine (located in the SR planner

component) to execute the process included in the role

segment of each service response. The SR v1.0 uses the

Drools rule flow as the process model for the client-side

web services. Moreover, SR v1.0 can receive and un-

derstand knowledge sentences that are compatible with

PMML (Predictive Model Markup Language) V3 [21],

as follows.

– Rule-based model: consists of rule-based knowl-

edge sentences in the form of if-then-else statements

such as the following pattern.

If Condition (clientData)

Then serviceResponse = Modify (initialResponse)

The above knowledge sentence states that if the de-

fined condition on the client data (clientData) is

true, the final service response (serviceResponse) is

obtained by applying the modification function to

the received service response (initialResponse). Rel-

evant rule-based statements can be grouped into the

same category to be evaluated at the same time.

Moreover, different rule categories can be ordered

to be executed sequentially. SR executer uses the

Drools rule-engine to apply the rules to the client

data using the forward chaining strategy. In this

strategy, a rule engine matches data against the

rules to infer conclusions, which result in actions.

– Mining model: represents the result of applying

a data mining algorithm to training data and the

resulting model can be used to analyze new data.

A mining model is specified by two elements: model

signature and model content. A model signature is in

the form of a 3-tuple < type, inputs, outputs > that

represents the structure of the model. Each mining

model has a number of parameters whose values (as-

signed in the training phase) specialize the model for

a specific task. The model parameter values identify

the content of each mining model. SR Version 1.0

supports two types of mining models: neural net-

work [10] and decision tree [9].

– Neural network: includes a network of simple

processing elements (called neurons) that can ex-

hibit complex global behaviour, determined by

the neurons interconnections and their assigned

weights. Learning in neural network involves ad-

justments to the neurons and interconnection

weights. There are two different styles of train-

ing that are both supported by SR Version 1.0.

In incremental training, the weights and biases

of the network are updated each time an input

is presented to the network, while in batch train-

ing the weights and biases are only updated after

all the inputs are presented. To support neural

networks, SR executer has the following compo-

nents: i) a neural network builder to build the

structure of the model based on the received

model signature; ii) a neural network trainer to

train the model based on the model content; and

iii) a neural network executor to apply the model

to the client data and returns the result.

– Decision tree classifier: is a predictive model that

is presented in the form of a tree. Decision tree

learning involves constructing a tree by recur-

sively partitioning the training data. In each step,

a node is added to the tree to represent a new

partitioning. The nodes and their edges repre-

sent the content of a decision tree. Similar to

the neural network model, the SR executer con-

tains: i) a decision tree builder; and ii) a decision

tree executor to work with decision trees.

Finally, SR version 1.0 is provided as two Java pack-

ages: ServiceDeveloper and ServiceRep which can be im-

ported into any service provider and client applications

as follows.

– ServiceDeveloper package: a service developer uses

this package to develop a client-side web service

graphically using the Drools APIs and widgets. Fig-

ure 6 (top) represents a snapshot of the Client-side

Web Service Developer application, developed based

on this package.

– ServiceRep package: a client application developer

uses this package to generate one instance of the

service representative and communication channel.

9

Fig. 6 (Top): snapshot of the ”Client-side Web Service Developer”, used by a service developer to develop a client-side web service.
(Bottom): snapshot of the ”Service Representative Manager”, used by a service client to monitor a client-side web service invocation

(e.g., a decision support service in this case).

Using the provided APIs, the client application can

supply the client data to the communication chan-

nel, according to the channel schema that is ob-

tained from the service registry. The communication

channel schema is also passed to the service repre-

sentative instance to configure itself. After configu-

ration, the client invokes the client-side web service

from the provider and blocks itself to receive the

service response from the service representative and

through the communication channel. Figure 6 (bot-

tom) shows a snapshot of the Service Representative

Manager which uses this package to monitor differ-

ent phases of a client-side web service invocation.

6 Case Studies

In order to present and evaluate the diverse applications

of the proposed service representative, we designed and

developed three case studies in different domains: bank-

ing, health care, and insurance. Since web services of

Type 1 in the proposed SOA model refer to typical web

services, we only focus on web services of Type 2 and

Type 3, discussed in subsection 4.4. To reduce the re-

dundancy and cover different aspects of the proposed

model, similar parts are eliminated in the following case

studies.

10

6.1 Case Study 1: Highly-Secure Financial Adviser

In order to call a context-aware service, a service client

shall reveal her contextual information to the service

provider or a context manager, while this may vio-

late her information privacy and security. For exam-

ple, to provide personalized advice, traditional finan-

cial advisers ask for personal information from their

clients (e.g., client’s portfolio or cash information). In

the first case study, we present a secure financial ad-

viser in the context of stock market where a service

uses the service representative to personalize financial

advice without asking the client to send her personal

information. To call this web service, the client sends a

request to the service provider to receive financial ad-

vice and then provides her financial information (client

data) to the service representative through the commu-

nication channel. After processing the client request,

the service provider responds a message with the fol-

lowing components.

– Role segment: financial advice customizer.

– Knowledge segment: guidelines to personalize gen-

eral advise based on the client’s portfolio.

– Information segment: general financial advice.

Case Study Specification. The process of gener-

ating financial advice could be very complicated and is

out of scope of our discussion. In this case study, we

are interested only in the personalization procedure, as

follows. This service receives client’s general preferences

such as: category of investment (stock, option, or mu-

tual fund); term duration (short term or long term); and

risk level (low, medium, or high). However, the client

keeps her sensitive information local and private, such

as client’s financial information (portfolio, and cash).

Then, the service provider generates a set of general fi-

nancial advice (stock buy and sell advice) according to

the client preferences.

Each general financial advice is in the form of ei-

ther Buy Advice = < Share Symbol, Min Percentage,

Share Price> or Sell Advice = <Share Symbol, Max

Percentage, Share Price>. A stock buy (or sell) advice

recommends the client to have minimum (or maximum)

percentage of a specific share in their portfolio. The ser-

vice provider assigns the role of advice customizer to the

service representative to personalize the general advice

based on the local client’s financial information and by

performing the following operations.

– For each sell advice: if the share symbol is not avail-

able in the client’s portfolio, ignore the advice. Oth-

erwise, compute the number of this share that the

client should sell based on the client’s portfolio and

the advice max percentage field.

– For each buy advice: if the client does not have

enough cash to buy the corresponding share, ignore

the advice. Otherwise, compute the number of this

share that the client should buy based on the client’s

cash and the advice min percentage field.

Service Client. The client application sends a re-

quest message to receive financial advice. The request

message does not contain sensitive financial information

of the client. Moreover, the client application supplies

its portfolio and cash information into the communica-

tion channel (Figure 7), based on the communication

channel schema published on the service registry. Fi-

nally, the service client receives the final customized

advice from the service representative and through the

communication channel.

Fig. 7 Communication channel schema in the financial adviser

case study.

Service Provider.The three layers of the service

provider are specified as follows.

1. Customization layer specifies the role of financial ad-

vice customizer for the service representative (shown

in Figure 8). For this purpose, it first assigns a pro-

cess of applying two categories of rule-based knowl-

edge models to the general advice. Moreover, client’s

portfolio, holding, and cash information are assigned

to the SR sensors and an effector is considered to re-

turn the customized advice to the client.

2. Training layer encodes the advice personalization

knowledge sentences (represented in Figure 9) into

the knowledge segment of the response message.

3. Information layer is fed by either an automated sys-

tem or a financial expert who generates financial

advice in the specified format in Case Study Speci-

fication section, such as the following advice.

Buy Advice: <MSFT, 12%, 25.12$>

Sell Advice: <AAPL, 5%, 344.00$>

This advice is assembled into the information seg-

ment of the response message.

Service Representative. The SR planner uses the

role segment of the service response to customize the

generic service representative to be a financial adviser

by performing the following tasks.

1. Generates an abstract process with two sub-processes

based on their descriptions in the role segment. This

process is placed in the SR executer.

11

Fig. 8 Role description of the service representative in the financial adviser case study.

Fig. 9 Advice personalization knowledge.

2. Assigns a rule-based knowledge model to each of the

generated sub-processes.

3. Connects the SR sensors to the Read ports of the

communication channel to provide client personal

data as inputs for the knowledge models.

4. Connects the SR effectors to the Write port of the

communication channel to return the customized

advice.

In the training phase, the planner loads each rule-

based model by the received customization knowledge

from the service provider. Finally, in the execution phase,

the SR executer runs the generated process where in

each step of this process, it applies the corresponding

rules to customize the general advice.

This web service can be more sophisticated if the

SR analyzer is involved to convert the client data into

a proper format for the knowledge models. For example,

if the client uses a different currency than the general

advice, the agent analyzer can exchange their currency

before applying the models. Finally, the service repre-

sentative stores the customization knowledge into its

internal knowledge base to relieve the service provider

from sending them each time.

The message exchanges between the service provider

and the service client is shown in Figure 10. The XML

schema of the request and response messages are dis-

played in Figures 11, and 12. By using these schemas,

we developed WSDL description of this web service and

then we used a top-down approach to implement the

body of this web service.

12

Fig. 10 Message exchanges between the secure financial adviser web service and the service client.

Fig. 11 Financial adviser request message schema (FinancialAdviserRequest.xsd).

6.2 Case Study 2: Agent-based Clinical Decision

Support System

In this section, we present a case of a Clinical Decision

Support System (CDSS) in the context of vascular dis-

eases. A CDSS provides recommendations for both pa-

tients and physicians by applying its medical guidelines

to the personal health information, known as Personal

Health Record (PHR) or Electronic Medical Record

(EMR). A typical CDSS requires that the patients send

their information that may violate their privacy and

security. Moreover, as a medical center calls the same

CDSS for different patients, transferring PHRs over the

network increases the network traffic significantly. Based

on the proposed model, a CDSS can employ the service

representative to apply its medical guidelines to the lo-

cal PHRs to improve the security and efficiently.

We modified a CDSS that is called Vascular Tracker

(VT) [1] to work based on the proposed model, as fol-

lows. A physician (service client) supplies the patient’s

PHR information (client data) into the communication

channel and sends a request message to receive medical

advice. The CDSS (service provider) response message

contains three segments as follows:

– Role: clinical decision support agent.

– Knowledge: medical guidelines.

– Information: none.

This service is categorized as Type 2 of the proposed

services and uses mining models as its knowledge mod-

els. Different parts of this system are described below.

Fig. 13 Communication channel schema in the agent-based
CDSS.

Case Study Specification. COMPETE III Vas-

cular Tracker (C3VT) [1] is a decision support system

that assists physicians to observe and ideally control pa-

tient’s different risk factors within the domains of car-

diovascular, diabetes, hypertension, and dyslipidemia

diseases. C3VT’s database contains a large body of

medical guidelines collected using a methodology known

as evidence-based practice. The clinical algorithms are

so fine-tuned that cover different cases of most individ-

ual patients and is confidently used by a large group

of physicians. The VT guidelines are categorized into

diabetes, hypertension, dyslipidemia, coronary artery

disease, cerebrovascular disease, peripheral vascular dis-

ease, and healthy. Each category has a number of corre-

sponding guidelines that can be applied to a patient’s

PHR in a specific order. As the result, each medical

guideline generates recommendation messages for both

physicians and patients. Moreover, VT defines a schema

for the request messages including vascular-related PHR

information such as blood pressure, HBA1C results, eye

exam, weight, and diet that must be provided by a caller

to use this CDSS. In this case study, we use the service

representative to apply the medical guidelines (received

them from VT) to a local PHR at the client site.

13

Fig. 12 Financial adviser response message schema (FinancialAdviserResponse.xsd).

Service Client. The client application sends a re-

quest message to receive medical advice and recom-

mendations. The request message does not contain the

patient’s information and only identifies the category

of VT supported diseases that apply for the patient.

The client supplies the patient’s information into the

communication channel (Figure 13), based on the VT

schema published on the service registry. There are also

two ports of the communication channel that allow the

patient and physician to receive the medical recommen-

dations and alerts from the service representative.

14

Fig. 14 Decision tree representing a VT medical guideline that corresponds to one step of the process described in Figure 15.

Service Provider. The developed service provider

is a modified version of the VT CDSS where its three-

layer architecture enables VT to offer high privacy for

their clients. Since this service is of Type 2, the data

is provided to the SR by the client application and

therefore the information layer is not required. The cus-

tomization and training layers of the service provider

are specified as follows.

1. Customization layer specifies the role of CDSS agent

for the service representative based on the received

VT diseases category from the client. A SR role de-

scription to provide recommendations in the case

of diabetic patients is displayed in Figure 15. The

corresponding process defines a sequence of medi-

cal guidelines that should be applied to the relevant

patient’s PHR. Moreover, this layer defines the SR

configuration to perform this role as follows. It as-

signs a sensor for the relevant patient’s PHR and

two effectors for the patient and physician recom-

mendations. Finally, this layer specifies the required

knowledge model in each step of the process that in-

cludes the type of the model (decision tree), model

inputs (relevant PHR information), and model out-

puts (patient and physician recommendations). In

other words, it specifies each knowledge model by

defining its signature.

2. Training layer provides the specified medical guide-

lines in the customization layer where each guide-

line is encoded as a decision tree. A corresponding

decision tree to a set of VT medical guidelines is

displayed in Figures 14. This guideline gives rec-

ommendations to both patient and physician about

the result of a blood test (Hb1Ac) with considering

three patient PHR fields. The decision tree param-

eters including the decision and split nodes infor-

mation (i.e., model content) are serialized into the

knowledge segment of the response message.

Service Representative. The planner customizes

the generic SR by connecting the sensors and effectors

to the corresponding ports of the communication chan-

nel and instantiating a process with the corresponding

sub-processes in the SR executer. To complete the cus-

tomization phase, the planner assigns one decision-tree

builder object to each sub process. Also, the received

knowledge is stored in the SR knowledge base that can

be reused in the next service calls. In the training phase,

each decision-tree is reconstructed based on the received

knowledge to represent an executable medical guideline

at the client site. Finally, the executer applies each deci-

sion tree to the patient’s PHR and the outcome (recom-

mendations) is written to the communication channel.

15

Fig. 15 Role description for the service representative to perform as a CDSS agent.

6.3 Case Study : Customizable Credit Card Fraud

Detector

In this section, we present a case of fraud detection in

the context of credit card transaction systems. The legal

or fraud patterns in the credit card transactions can be

identified by either symbolic or numerical models. A

symbolic approach uses known fraud patterns while a

numerical model uses a neural network to classify the

transactions. In general, a sophisticated fraud detector

system requires a large number of training instances

from different locations of the covered region which may

have different patterns of fraud. In such cases, a fraud

detector that is customized based on local data seems to

be more proper and accurate for small and medium size

organizations such as a bank or an insurance company.

In this case study, we are interested in a fraud detector

web service that takes local data into account to verify

credit card transactions. Based on the proposed model,

a service provider can use the service representative to

build a customized fraud detection model at the client

site, as follows:

A service client gives permission to the service repre-

sentative to read the local transaction information via

the communication channel and sends a request mes-

sage to receive a fraud detector service. The fraud de-

tector service responds with a message containing three

segments as follows:

– Role: credit card fraud detector.

– Knowledge: symbolic fraud detection model and guide-

lines to build a local numerical fraud detection model.

– Information: none.

In this case study, we use both the rule-based and

mining-model knowledge to train the service representa-

tive. Different parts of this system are described below.

Case Study Specification. Each transaction is

represented as a tuple x of features (x =< x1, ..., xn >).

Where, the features can be symbolic (e.g., type, ad-

dress) or numerical (e.g., time, money). Consequently,

the symbolic and numerical fraud detectors operate on

symbolic and numerical features, respectively. Two met-

rics are usually used to evaluate a fraud detector sys-

tem as follows: precision indicating the number of found

fraud transactions relative to the total tested trans-

actions; and confidence indicating the accuracy of the

method. While, the symbolic model offers high preci-

sion, the numerical model yields higher confidence. A

sequential combination of these models is reported in [5]

to provide both high precision and confidence. Instead

of applying a general fraud detector model to a target

transaction at the provider site, the proposed approach

uses the service representative agent to customize and

apply a fraud model to the local transactions at the

client site.

Service Client. The client application connects a

read port of the communication channel to its database

containing the log of the collected local transactions

(training data). The target transactions to be checked

for fraud (testing data) are also supplied into a read

port of the communication channel. There is also a port

that the service representative writes the results of the

local transactions verification for the client. The struc-

ture of the communication channel is shown in Figure

16

Fig. 16 Role description for the service representative in the customizable fraud detector case study.

Fig. 17 Required knowledge for Model III, in the customizable fraud detector, to combine the verification results obtained by a
symbolic and a numerical approach.

18. Therefore, the client application only sends a re-

quest message to the service provider which does not

include local transaction information.

Fig. 18 Communication channel schema in the customizable
credit card fraud detector case study.

Service Provider. The service provider is a mod-

ified version of the sequential fraud detector presented

in [5]. Similar to the second case study, this web ser-

vice is categorized as Type 2 and its required data is

supplied solely by the client. The customization and

training layers of this service provider are specified as

follows.

1. Customization layer defines a role for the service

representative to customize a numerical model us-

ing client data and then apply this model. Moreover,

the SR is asked to reconstruct a symbolic model

from the received model parameters from the ser-

vice provider and then apply this model to the local

transactions. The final verification will be obtained

by a selection model. Figure 16 illustrates the role

description where the assigned process includes one

mining and two rule-based knowledge models as fol-

lows.

– Model I is an incremental Radial Basis Function

(RBF) model to represent a numerical fraud de-

tector. This model is generated and customized

at the provider and client site, respectively.

– Model II is a rule-based model to represent a

symbolic fraud detection model.

– Model III is a rule-based model that acts as an

arbitrator between the other two models.

2. Training layer generates or extracts the model con-

tent for each specified model in the customization

layer, as follows.

17

– Model I: is initiated based on the provider train-

ing transactions. In this case study, each training

instance is a tuple of (x1, x2, ..., x8, y) where xi

represents the amount of money that a credit

card holder spent in the ith week and y repre-

sents the legal or fraud result for this instance.

After training the RBF, its parameters are en-

coded by PMML and are put in the knowledge

segment of the response message.

– Model II: is a number of if-then-else rules that

represent the relations between the symbolic fea-

tures and fraud. These rules can be obtained

based on the generalization techniques described

in [5] and is shown in Figure 19. In this tech-

nique, fraud transactions are compared with each

other to find the similar pairs. Each pair is then

merged into a generalized rule by replacing a

non-identical feature by a don’t-care symbol ”∗”.

– Model III: describes a sequential combination of

Models I and II that improves the performance

metrics of the fraud detector. These rules are

listed in (Figure 17), where the decisions for fraud

by the symbolic model are checked additionally

by the numerical model to increase confidence

and decrease the number of false alarms.

Service Representative. After setting the SR con-

figuration in the customization phase, the SR planner

trains the three specified knowledge model as follows.

The numerical model (Model I) is initially built from

the received model parameters and then it is completed

by the client training transactions received from the

SR sensors. Moreover, the symbolic model (Model II)

and the selection model (Model III) are loaded with

the received rules. In the execution phase, the service

representative applies the customized numerical model

and the symbolic model to the local transactions and

finally the adjusted result that is obtained by applying

the third model is written back into the communication

channel to be used by the client.

6.4 Evaluation

To compare the proposed client-side web services with

the traditional server-side web services, we developed

an equivalent traditional web service for each of the

described case studies, as follows.

1. A financial adviser web service that takes client’s

portfolio and cash information and returns person-

alized advice to the client.

2. A clinical decision support service that takes pa-

tient’s PHR information; applies the vascular tracker

guidelines; and returns recommendations for both

the patient and the physician.

3. A customizable credit card fraud detector service

that takes the transaction records stored in the client

database as well as the target transaction and re-

turns the verification result to the client.

As our evaluation metrics, we used the QoS param-

eters to compare proposed client-side and traditional

server-side web services. The QoS parameters for web

services refer to the quality aspect of a web service.

These parameters are used as constraints when a ser-

vice client searches for the best service. Service Level

Agreements (SLA) are also defined based on the QoS

parameters. These may include performance, availabil-

ity, scalability, accuracy, accessibility, security, privacy,

throughput, and network-related QoS requirements.

The traditional web services (Type 1) are differenti-

ated from the proposed services (Type 2 and Type 3) by

the platform where the client data are processed. While

the former integrates all the processing at the server

platform, the latter distributes the processing between

the server and client platforms. This directly affects the

performance parameters (e.g., response time), network-

related QoS metrics (e.g., message size), and the client

privacy. There are also QoS parameters which depend

on the performance and network parameters such as

throughput, scalability, and capacity. However, other

QoS metrics are independent of client-side or server-side

processing of client data such as accessibility, security,

accuracy, and availability. Then, we considered three

service parameters as our evaluation criteria: service

message size, service response time, and client privacy,

because they are representative for QoS comparison of

client-side and server-side web services.

Client privacy is defined as the client ability to

keep her sensitive and confidential data local and pri-

vate. The proposed web services process confidential

client data locally using the service representatives, while

the traditional web services process confidential client

data at the provider site. The comparison results are

illustrated in Table 1.

Table 1 Client privacy comparison results.

Privacy Proposed Traditional
Web Service Web Service

Case Study 1
√

×
(revealing financial information)

Case Study 2
√

×
(revealing PHR information)

Case Study 3
√

×
(revealing credit card information)

18

Fig. 19 Credit card fraud patterns reported in [5]. Each column represents one symbolic transaction feature.

Message Size (MS) is the total size of service re-

quest and response messages that is defined for a web

service ”s” as follows.

MS(s) = SizeRequest(s) + SizeResponse(s)

The traditional approaches require transferring com-

plete client data from service clients to service providers.

On the other hand, the proposed web services process

client data locally that implies the MS is independent

of the size of the client data. Table 2 illustrates the MS

comparison of the traditional and proposed web services

for the described case studies.

Table 2 Message Size comparison results.

Message Proposed Traditional
Size Web Service Web Service

(KByte) (KByte)

Case Study 1 8 11

Case Study 2 12 7

Case Study 3 6 835

Based on Table 2, the traditional and proposed web

services represent compatible Message Size for the first

and second case studies. However, the proposed ap-

proach outperforms the traditional approach in the third

case study where the client has to send her entire lo-

cal database to the service provider in order to receive

customized verification results.

The proposed approach improves the Total Message

Size (TMS) significantly, which represents the total size

of service messages where the same service is called mul-

tiple times by a service client. In the traditional web

services, the TMS is equal to multiplication of Message

Size by the number of service calls. While in the pro-

posed web services the received knowledge is stored in

the SR knowledge base that results in reducing the size

of the response messages. Figure 20(top) compares the

Total Message Size of the proposed and traditional web

services for each case study.

Response Time (RT) is divided into two factors:

Network time (N) and Process time (P) and is defined

for a web service ”s” as follows.

RT (s) = N(s) + P (s)

Network time is the amount of time required to

transfer request and response messages that depends

on both network bandwidth and message size. Process

time is the amount of time it takes a web service to

perform its designated task. Since, service providers use

more powerful CPUs, traditional approaches have less

process time. On the other hand, the proposed web ser-

vices require smaller messages results in less network

time.

For this case study, we obtained the process time,

P (s), for the three case studies using a 2.4 GHZ dual-

core CPU. Moreover, we assumed the service provider

has a CPU that is twice faster than the service client.

Finally, there is a 128 KByte/Sec link connects the ser-

vice client to the service provider.

Table 3 shows the Response Time comparison be-
tween the proposed and the traditional web services.

These results show the proposed approach overcomes

the traditional approaches when the client data grows.

Table 3 Response Time comparison results.

Response Proposed Traditional
Time Web Service Web Service

(msec) (msec)

Case Study 1 131 112

Case Study 2 125 75

Case Study 3 207 6612

Similar to the Total Message Size metric, we com-

pared the Total Response Time (TRT) of the proposed

and traditional web services in the context of these case

studies. This comparison, that is illustrated in Figure 20

(bottom), confirms that client-side processing of client

data improves the TRT.

19

Fig. 20 (Top) Total Message Size and (bottom) Total Response Time comparisons of the traditional and the proposed web services
where they implement the described case studies.

7 Discussion

The proposed client-side web services are differentiated

from the traditional server-side web services as they

can process client data locally using local and generic

agents. In this section, we list a few important issues

such as the applications and challenges of the proposed

web services.

7.1 Applications

The proposed web services do not intend to replace the

traditional web services. However, web services can be

developed efficiently and securely using service repre-

sentatives in the following cases.

1. Context-aware services, where the services operate

according to the available contextual information

from the environment. If a context-aware web ser-

vice can be modeled with a pair of (general service

response, customization knowledge), it is eligible to

be delivered by the service representative. There-

fore, the privacy and security aspects of these ser-

vices will be improved (Case Study 1).

2. Sensitive and confidential client data, where these

data should be processed locally (Case Study 2).

3. Large volume client data, where sending these data

to a service provider requires large messages (Case

Study 3).

4. Dynamic environments, where the client’s context

is changing over time. If the context (e.g., location)

is changing frequently, a traditional service must be

called for each change which increases the network

traffic as well as the service cost. In contrast, the

SR utilizes the role knowledge to generate dynamic

service response for each change of the context.

5. Dynamic services, where the provider’s knowledge

is changing over time. The SR enables providers to

separate the required knowledge from the service

implementation and facilitates change management.

The proposed web services are described by WSDL

documents, which can be stored in XML repositories. A

WSDL description for a traditional web service includes

what the web service does, how it is accessed, where it is

located, and name and type of the service parameters.

The traditional WSDL documents are sufficient enough

to describe the proposed services where the service pa-

rameters are divided into two parts: local that are used

20

by the service representative and remote that are sent

to the service provider to be processed remotely. As a

result, the web services which employ service represen-

tatives to process client data can be discovered both

statically (at design time) or dynamically (at run time)

using existing WSDL-based approaches.

Finally, the proposed client-side web services can

also be composed with the traditional server-side web

services using BPEL models. To invoke a client-side web

service, a BPEL process first calls the web service and

sends its remote parameters. When it receives the ser-

vice response message which includes the role descrip-

tion and the required knowledge and information, it

will forward it to the client side to be executed by the

service representative.

7.2 Challenges

Although the distributed service processing offered by

the service representative improves the SOA perfor-

mance in several cases, it imposes a number of chal-

lenges for both service client and service developer which

should be addressed.

– Service Provider Privacy: Required knowledge

for the service representative can be enterprise as-

sets and resources that revealing them may violate

the enterprise privacy. To prevent this security vul-

nerability, a service provider can use one of the fol-

lowing techniques.

1. Enterprise knowledge can be divided to be ap-

plied locally (at the provider side) by the service

or externally (at the client side) by the service

representatives. Therefore, the critical knowledge

(e.g, market analysis in Case Study 1) remains

at the service provider, while the non-critical

knowledge (e.g., advice customization guidelines

in Case Study 1) will be sent to the service rep-

resentative.

2. The service client only receives the service re-

sponse from the service representative. There-

fore, the client does not have access to the trans-

ferred knowledge between the service provider

and representative. Consequently, encryption tech-

niques can be used for data transmissions be-

tween a service provider and representative to

improve the enterprise privacy.

– Service Client Adaptation: To call the proposed

web services, the service client is required to in-

stall a generic service representative with the cor-

responding communication channel, which increases

the client side complexity. However, the current ver-

sion of the service representative (SR version 1.0)

needs a few megabytes (about 3 Mbytes) hard disk

space and offers reasonable computing speed (dis-

cussed in Evaluation section). Moreover, after the

generic service representative installed, the service

client can invoke different client-side web services.

– Testing: The service representative executes a pro-

cess on behalf of the service provider at the client

site. Therefore, testing and error handling proce-

dures are more challenging for service developers

since they do not have direct access to the client’s re-

sources and execution platform. An effective evalu-

ation technique is required which includes test cases

for different client’s platform and context. Moreover,

the interaction between the client application and

the service representative should be evaluated using

proper test cases. Finally, evaluation techniques for

the Rich Internet Applications (e.g., Java Applets

or Microsoft Silverlight) [11] can be useful for test-

ing the client-side web services.

– Interoperability: Interoperability of service client

and provider is another challenge in using the client-

side web services. Traditional web services force ser-

vice clients to send service parameters that are un-

derstandable for the service provider. However in

the proposed approach, the service representative

uses its analyzer component to convert the client

data into an understandable data format for the ser-

vice representative which may increase the interop-

erability issues. To support different types of client

data, the service provider is required to send the

corresponding conversion functions (as the knowl-

edge) to the service representative to be applied by

the SR analyzer.

8 Conclusions and Future Work

In this paper, we presented a novel model for SOA based

systems that enables enterprise organizations to dele-

gate their agents to operate on the client platform. Ac-

cording to the proposed model, a generic and client-side

service representative applies the knowledge that is re-

ceived from the service provider to the client data and

delivers the requested information to the client. To sup-

port this model, we also proposed an architecture that

introduces an executable platform at the client site for

service providers which enhances the privacy and secu-

rity aspects of web services. In addition to existing web

services, the proposed approach models two novel types

of services.

21

Different types of web services are complementary

and a business service can be implemented based on one

or more of these types. As a future work, we will de-

fine cost functions for each of the involved factors (e.g.,

testing, response time, interoperability, and complex-

ity) to guide service developers about the proper type

for each business service. Moreover, we intend to assign

the service representative more SOA relevant roles such

as negotiator to develop new approaches for SOA re-

lated tasks. The proposed service representative can be

employed by collaborating service providers to perform

a composite role at the client-side. This motivates us to

extend our model to introduce the concept of client-side

service composition. Finally, we are also working on a

web service extension that supports service representa-

tives directly.

Acknowledgements The authors would like to thank COM-
PETE group for the use of their Vascular Tracker (VT) materials

for our experiments.

References

1. Compete III Vascular Tracker website. http://www.compe
testudy.com/

2. An architectural blueprint for autonomic computing. Tech.

rep., IBM Corporation (2004). 4th eddition

3. Alessandrini, M., Lippe, W., Nuesser, W.: Intelligent Service

System: An Agent-Based Approach for integrating Artifical
Intelligence Components in SOA Landscapes. In: Interna-

tional Conference on Web Intelligence and Intelligent Agent

Technology, pp. 496–499. Sydney, Australia (2008)

4. Baldauf, M., Dustdar, S., Rosenberg, F.: A survey on
context-aware systems. International Journal of Ad Hoc and

Ubiquitous Computing 2(4), 263–277 (2007)

5. Brause, R., Langsdorf, T., Hepp, M.: Neural data mining for

credit card fraud detection. In: ICTAI ’99: Proceedings of the
11th IEEE International Conference on Tools with Artificial

Intelligence, p. 103. IEEE Computer Society, Washington,

DC, USA (1999)

6. Cheng, Y., Leon-Garcia, A., I.Foster: Toward an Autonomic
Service Management Framework: A Holistic Vision of SOA,

AON, and Autonomic Computing. IEEE Communications
Magazine 46(5), 138–146 (2008)

7. D.Sangiorgi, D.Walker: PI-Calculus: A Theory of Mobile
Processes. Cambridge University Press, New York, NY, USA

(2001)

8. Dustdar, S., Schreiner, W.: A survay on web service compo-

sition. International Journal of Web Grid Services 1(1), 1–30
(2005)

9. Han, J., Kamber, M.: Data mining: concepts and techniques.

Morgan Kaufmann Publishers Inc., San Francisco, CA, USA

(2000)

10. Haykin, S.: Neural Networks and Learning Machines. Pren-
tice Hall (2008)

11. H.Raffelt, T.Margaria, B.Steffen, M.Merten: Hybrid test of

web applications with webtest. In: Proceedings of the 2008

workshop on Testing, analysis, and verification of web ser-
vices and applications, pp. 1–7. ACM, New York, NY, USA

(2008)

12. Huebscher, M.C., McCann, J.A.: A survey of autonomic
computing—degrees, models, and applications. ACM Com-

put. Surv. 40(3), 1–28 (2008)

13. Khalili, A., Badrabadi, A., Khoshalhan, F.: A Framework
for Distributed Market Place Based on Intelligent Software

Agents and Semantic Web Services. In: IEEE Interna-
tional Congress on Services Part II, pp. 141–148. Hawaii,USA

(2008)

14. Krafzig, D., K.Banke, D.Slama: Enterprise SOA: Service Ori-
ented Architecture Best Practices. Prentice-Hall (2005)

15. Le, D., Eck, S.A., Cao, T.: A Survey of Web Service Discovery

Systems. International Journal of Information Technology
and Web Engineering 2(2), 65–80 (2007)

16. Lee, S., Choi, K., H.Shin, D.Shin: Ag Webs: Web Services

based on Intelligent Agent Platform. In: The 9th Interna-
tional Conference on Advanced Communication Technology,

pp. 353–356. Phonex, Korea (2007)

17. Maamar, Z., Mostefaoui, S., H.Yahyaoui: Toward an agent-
based and context-oriented approach for Web services com-

position. IEEE Transactions on Knowledge and Data Engi-
neering 17(5), 686–697 (2005)

18. P.C.K., H., H.Li, Jeng, J.: WS-Negotiation: an overview of re-

search issues. In: The 17th Annual Hawaii International Con-
ference on System Sciences, pp. 10–18. Hawaii, USA (2004)

19. Pham, V., Karmouch, A.: Mobile software agents: An

overview. IEEE Communications Magazine 36, 26–37 (1998)
20. Proctor, M., Neale, M., P.Lin, M.Frandsen: Drools documen-

tation. Tech. rep., JBoss.org (2008)

21. Raspl, S.: PMML Version 3.0 - Overview and Status. In: Pro-
ceedings of the ACM Workshop on Data Mining Standards,

Services and Platforms, pp. 18–22. Philadelphia, USA (2004)

22. Soja, P., Paliwoda-Pekosz, G.: What are real problems in
enterprise system. Industrial Managment and Data Systems

109(5), 610–627 (2009)
23. Sycara, K., Paolucci, M., Soundry, J., Srinivasan, N.: Dy-

namic discovery and coordination of agent-based semantic

Web service. IEEE Internet Computing 8(3), 66–73 (2004)
24. Wong, D., Paciorek, N., Moore, D.: Java-based mobile agents.

Commun. ACM 42(3), 92–ff. (1999)

25. Wong, D., Paciorek, N., T.Walsh, J.DiCelie, M.Young,
B.Peet: Concordia: An infrastructure for collaborating mo-

bile agents. In: MA ’97: Proceedings of the First Inter-

national Workshop on Mobile Agents, pp. 86–97. Springer-
Verlag, London, UK (1997)

26. Xiang, L.: A Multi-Agent-Based Service-Oriented Architec-

ture for Inter-Enterprise Cooperation System. In: Second In-
ternational Conference on Digital Telecommunications, pp.

22–32. Silicon Vally, USA (2007)

27. Xu, B., Yang, X., Shen, Y., L.Shanping, Ma, A.: A role-
based SOA architecture for community support systems. In:
International Symposium on Collaborative Technologies and
Systems, pp. 408–415. Irvine,USA (2008)

28. Y.Yamato, H.Ohnishi, Sunaga, H.: Study of Service Process-

ing Agent for Context-Aware Service Coordination. In: IEEE
International Conference on Service Computing, pp. 275–

282. Hawaii,USA (2008)
29. Zins, C.: Knowledge map of information science . Journal of

the American Society for Information Science and Technol-
ogy 58(4), 526–535 (2007)

