
16-01-02

1

1

Knowledge Transformation from Task Scenarios
to View-based Design Diagrams

 Department of Computing and Software
McMaster University

CANADA

SEKE’08

Nima Dezhkam
Kamran Sartipi

{dezhkan, sartipi}@mcmaster.ca

July 1, 2008

2

Outline

n  Task Scenarios
n  Scenarios in knowledge extraction
n  Proposed framework

n  Scenario generation

n  Scenario decomposition

n  Design construction

n  Fast-food restaurant case-study
n  Conclusions

3

Task scenarios

n  Different scenario representations:
n  Simple text
n  Graphical representation

n  Relational algebra, etc.

n  Common applications of scenarios:
n  Requirement elicitation and analysis,
n  Design representation,
n  Testing
n  Maintenance

We define a ‘’scenario” as a structured narrative text describing a
system’s requirements in terms of system-environment interactions at
business rule level.

Scenarios in Knowledge Extraction

n  Enhancement of scenario generation by using scenario
schemas

n  Formal representation of scenarios using tabular expression
is introduced in order to simplify the tasks of scenario
verification, validation and integration

n  Schema definition for semantic model of scenarios to help
requirement refinements

n  Modular representation of the scenarios to support the
reusability of the scenarios in different design contexts

5

Proposed Framework for Scenario to
Design Diagram Transformation

Properties:

n  Uses a scenario syntax that allows us to define well-structured
scenarios.

n  Uses a scenario schema to parse the scenarios and populate
an object base of actors, actions, and dependencies.

n  Uses Guidelines for transforming the elements in the object
base into design diagrams.

Transforms a set of text-based scenarios into two types of
design diagrams, as: Data and Function.

6

Proposed Framework …

Stage 1

(Scenario generation)

Stage 2

(Scenario decomposition)

Stage 3

(Design construction)

16-01-02

2

7

Scenario Syntax

n  Example scenario: “Order taker adds a menu item to an incomplete order.”

St
ag

e
1:

 S
ce

na
ri

o
G

en
er

at
io

n

Scenario : {Actor + {Constraints}0..M}1..N +

 {Action + {Constraints}0..M}1..N +

 {Working Information + {Constraints}0..M}1..N

(OT)

(ASM)

(PREP)

(MGR)

(INV)

Physical view

9

Sample Scenario Template Form

n  A scenario template forms the knowledge- base of
a fast-food restaurant system

St
ag

e
1:

 S
ce

na
ri

o
G

en
er

at
io

n

10

�
Proposed Scenario Schema

St
ag

e
2:

 S
ce

na
ri

o
D

ec
om

po
si

tio
n

Example of Scenario Decomposition:�
One of the 12 Scenarios

n  Sample Fast-food scenario:

n  Decomposed scenario:

St
ag

e
2:

 S
ce

na
ri

o
D

ec
om

po
si

tio
n

Objectbase Created from 10 Scenarios

St
ag

e
2:

 S
ce

na
ri

o
D

ec
om

po
si

tio
n

16-01-02

3

Design Construction Guidelines: �
Data View

n  Step 1: Extract all instances of Actor, Working information, and Data dependency classes from the
object base and apply the following rules on them:

1. Instances of Actor and Working information are candidate entities/attributes.

2. Instances of Is dependency imply generalization and inheritance relationships, i.e., A Is B,
means A is sub-entity of B, or B is super-entity of A.

3. Candidate entities/attributes that appear on either side of a Is, Is-associated-with, or Is-part-of
relationship are considered as entities.

4. Instances of Has and Belong-to dependencies are used to identify the attributes of the entities,
i.e., A Has B (or B Belongs-to A) means B is an attribute of entity A.

5. Instances of Is-associated-with dependency imply candidate association relationships.

6. Instances of Is-part-of dependency imply candidate decomposition relationships.

n  Step 2: Depict every entity by a rectangle, every attribute of an entity as a bubble connected to it and
label them by their names. Every relationship between two entities can be represented by a line
connecting them. Label every relationship according to the type of dependency it came from, e.g.,
“is”, “is-part-of”, etc.

St
ag

e
3:

 D
es

ig
n

C
on

st
ru

ct
io

n

14

Generated E-R Diagram

St
ag

e
3:

 D
es

ig
n

C
on

st
ru

ct
io

n

Part of generated ER
diagram for fast-food
restaurant

Decomposed scenario

Design Construction Guidelines:
Function view

n  Step 1: Extract all instances of Action, Action dependency, and
Constraint classes from the object base and apply the following
rules on them:
1. Instances of Action class are the functions.

2. Instances of the Follow and Precede dependencies determine the time-order of

execution of the functions. To simplify the diagram generation, transform all the
Precede dependencies to Follow, i.e., for all functions f1 and f2, change
“f1Precede f2” to “f2 Follow f1”

3. The participants of a Is-parallel-with dependency must be executed concurrently.

4. The conditions for a function to follow another is determined by the Constraints
related to the function, actor, and working information in the corresponding
scenario that the “following” appears.

n  Step2: Generate Follow+ relationship (the transitive-closure of the Follow).

n  Step 3: Sort the functions in ascending order based on the number of the
functions they follow, i.e., based on the number of times they appear on
the left hand side of a Follow relationship.

n  Step 4: Starting from the first of the list, depict the function (name A) with a
square and label it by its name. List all the functions that Follow A. Use
AND and OR connectors when necessary. Next, all arrows are labeled with
the triggering conditions obtained in rule “4” above. Finally, remove A from
the list and repeat Step 4, until the list is empty.

St
ag

e
3:

 D
es

ig
n

C
on

st
ru

ct
io

n

List of Actions in Order Taking �
Component and the “Follows” Relation

16

17

Generated Function Diagram

St
ag

e
3:

 D
es

ig
n

C
on

st
ru

ct
io

n

Part of generated Function
diagram for fast-food
restaurant

18

Conclusion

n  Task scenarios: are used to generate the ingredients
of the design diagrams.

n  Scenario generation: generating a set of structured
text-based scenarios that conform with a regular
expression syntax.

n  Scenario decomposition: mapping generated
scenarios onto scenario schema which allows parsing
the structured scenarios and generating instances of
schema classes.

n  Design construction: generating design diagrams in
Data and Function views using the decomposed
scenarios and based on a set of guidelines.

16-01-02

4

19

Knowledge Transformation from Task Scenarios
to View-based Design Diagrams

 Department of Computing and Software
McMaster University

CANADA

SEKE’08

Nima Dezhkam
Kamran Sartipi

{dezhkan, sartipi}@mcmaster.ca

July 1, 2008

MaMa cFcF oo oo d rd r ee ss tt aa uu rara ntnt ss ysys temtem

 MM acac FF oo oo dd is a new restaurant chain which offers fast food to the customers. It uses an
in-store computer system to assist order-taking and payment, food preparation, delivery,
and inventory.
Orders and payments are taken by staff using “touch-screen'' displays.
Kitchen and delivery staff view orders on displays, and register the status of orders by
pressing buttons of the keypads.
Inventory of the food and supplies is tracked by the computer system.
The restaurant manager is able to configure the system to set menu items , ingredients,
prices, inventory levels, and store setup.
The following section briefly introduces the various units of the MM acac FF oo oo dd System.

Request For Proposal (RFP)

The following slides discuss the produced SRS
 after requirement analysis phase

(OT)

(ASM)

(PREP)

(MGR)

(INV)

Physical view Order-Taking Unit

• This unit sets up customer orders and handles payment.

• Menu items are selected from the restaurant-menu by touching buttons on the
touch-screen.

• Selection of an item causes it to be added to the current order (which is displayed
in a scrollable window on the screen), and the subtotals / tax of the order are
displayed.

• An order can be paid anytime between its set-up and delivery to the customer.

• The system keeps the cash balance of each order-taking station and has facilities
for supporting “cash float” (i.e., a specified amount of cash in the order-taking
station at the beginning) and “skim” (i.e., a threshold amount of cash, which once
exceeded, must be transferred to the cash balance) of each station.

• Each order is handled by only one order-taker; however, the orders could be
stored in a list and each order-taker in the system can access this list to service the
stored orders.

(OT)

(ASM)

(PREP)
(MGR)

(INV)

Assembly Unit

• When an order is set up, the kitchen should be informed to prepare the order-
items.

• When the computer system determines that all items of an order are available in
the chutes, the order can be assembled.

• Each available assembly-station picks the order and displays it on its screen.

• The assembly-stations use screen and keypad for interaction with the staff.

• The staff assemble the orders, and using keypads inform the system. If the order is
paid, the system allows the delivery of the order to the customer, otherwise, the
delivery will be postponed to the time that the order is paid.

• If the system indicates that an order can be filled, but the chutes do not contain a
sufficient quantity of some order's item, the staff report the shortage to the system
to be prepared.

(OT)

(ASM)

(PREP)
(MGR)

(INV)
Food Preparation Unit

• In order to prepare an order, the system distributes order-items among preparation
stations, equipped to prepare certain items of the restaurant-menu.

• In general, more than one station is capable of making a particular item. Each
station has a screen and a keypad. Similar items of different orders are grouped
together.

• Considering the number of items assigned to each station and its current load of
work, the system decides whether to send the items to that station or not.

• The screen of the preparation-station displays a list of items and their quantities.

• Kitchen staff prepare the required quantity of an item, put them in the “chute”,
and using the keypad inform the system.

• There is one chute for each menu item.

• Menu items are prepared in response to real and anticipatory demands.
Anticipatory demands are set up by the manager to shorten the average time of
waiting for food.

(OT)

(ASM)

(PREP)
(MGR)

(INV)

16-01-02

5

Inventory Unit

• The inventory unit in the system keeps track of the consumption of all materials
used for preparation and packaging of the order-items.

• We refer to these materials as “raw-materials”. This unit has a very close
interaction with the preparation unit.

• The system keeps stock, and the inventory of raw materials is updated
dynamically.

• The arrival of new materials into storage is entered into the system by the staff,
and the consumption of the materials is dictated by the recipes of food-items.

• To preserve stock integrity, the system assumes a minimum threshold for usage of
each menu-item in the system. If the number of a certain menu-item drops below
this threshold, it is considered unavailable and the inventory unit alerts the order-
taking unit to inhibit taking that item.

(OT)

(ASM)

(PREP)
(MGR)

(INV) Management Unit

The management-unit of the restaurant system is responsible for setting up:

• Active stations in order-taking, preparation, and assembly units.

• System tables such as restaurant-menu, recipes, anticipated demands, minimum
number of menu-items, and raw-materials in stock.

• List of menu-items to be prepared by each preparation station.

• Cash skim and float.

• Different applicable taxes.

• System time and date.

(OT)

(ASM)

(PREP)
(MGR)

(INV)

E-R diagram of the Restaurant System

(OT)

(ASM)

(PREP)
(MGR)

(INV)

1 2

2

3

3

4

2 3 4

2

