
16-01-02

1

Dynamic Analysis and Design Pattern Detection
in Java Programs

Department of Computing and Software

McMaster University
Canada

SEKE’08

July 3, 2008

Lei Hu
Kamran Sartipi

{hul4, sartipi}@mcmaster.ca

1

Outline

Ø  Motivation
Ø  Research Problem Definition and Solution
Ø  Proposed Framework for Feature-Oriented Design Pattern

Detection
Ø  Feature-oriented Dynamic Analysis
Ø  Two-phase Design Pattern Detection Process

Ø  Case studies on Three Versions of JHotDraw Systems
Ø  Contribution

2

 �
 Motivation

Ø  Software product line is a group of software-intensive systems that share
a common set of features to satisfy the specific needs from the market.
n  Developed based on a reference architecture which consists of common

parts and variable parts.

Ø  An evolutionary development of a software product line starts from
reverse engineering activities.
n  Understanding the existing systems

n  Locating common features to reuse

Ø  Design pattern recovery can support the construction of software
product line.
n  Understanding the existing system at design level
n  Reusing the existing system’s design artefacts

3

Research Definition

Ø  Research Agenda:
n  To devise a methodology and supporting tools for recovering the

instances of design patterns from the implementation of software
system’s behavioural features, by the means of a high level pattern
description method.

Ø  Provided Solution:
n  We propose a reverse engineering framework which combines

n  feature-oriented dynamic analysis with
n  two-phase design pattern detection technique

 to identify the instances of design patterns for different software
behavioural features.

4

 �
Foundation of Reverse Engineering

Ø  Reverse Engineering

Ø  Two major sub-areas in Reverse Engineering
n  Static Analysis

n  Clustering
n  Visualization
n  Pattern Matching (Design Pattern Recovery)

n  Dynamic Analysis
n  Feature identification
n  Behavioural design model extraction

A process of analyzing a software system to identify a system’s components
and their interrelationships, and create representation of the system at a
higher level of abstraction. [Chikofsky&Cross]

5

Proposed Framework for
Feature-oriented Design Pattern Detection

6

16-01-02

2

 features

Group of
scenario sets

Approximate matching
using class relation

cardinality

Elicit common features
of existing systems

(Dynamic Analysis)
Two-phase Design Pattern Detection Process

Subject
System

System1 System2

System3

 A group of similar
systems in a domain

Execution
Patterns

For each common feature,
generate a set of feature-

specific scenarios for Subject
System

Execute scenario sets on the
instrumented Subject System to

generate execution traces

Execution
traces

Obtain inter-class
relations by parsing the

Subject System

Relation
matrices

Design Pattern
Repository

Extract execution patterns
using sequential pattern

mining

f1

f2
f3
f4
f5

Mapping between features
and feature-specific classes

Specific
features

Feature-specific
classes

Use concept lattice to
separate common classes

form feature specific classes

Structural matching
using inter-class relations

Target pattern
from Repository

Source-class
cluster

Correlate features
with identified design

pattern instances

Identified Target
pattern instances

Mapping between
features and design
pattern instances

Feature-oriented Dynamic Analysis
(Static Analysis)

7

Dynamic Analysis
Feature-Oriented Dynamic Analysis

8

Feature-Oriented Dynamic Analysis �
----Execution Traces Generation

Ø  Using Eclipse Test and Performance Tools Platform (TPTP) to collect the execution trac
generated by running the scenarios in the feature-specific scenario set.

Ø  Reducing execution trace size using filter set mechanism

Enter CH/ifa/draw/standard/AbstractHandle
Leave CH/ifa/draw/standard/AbstractHandle
Enter CH/ifa/draw/standard/RelativeLocator
Enter CH/ifa/draw/figures/RectangleFigure
Leave CH/ifa/draw/figures/RectangleFigure
 .
 .
 .
Leave CH/ifa/draw/standard/LocatorHandle
Leave CH/ifa/draw/standard/AbstractHandle

 Running the
system in a
profiling mode

-  Start, Draw an Ellipse, move, Exit
-  Start, Draw a Line, move, Exit
-  Start, Draw a Rectangle, move, Exit
- …
-  Start, Draw a Polygon, move, Exit

Feature-Specific Scenario Set TPTP
On Eclipse

Execution traces

Apply Sequential Pattern Mining
to generate Execution Patterns

 Using Eclipse Test and Performance Tools Platform (TPTP) to collect the execution
traces generated by running the scenarios in the feature-specific scenario set.

9

Feature-Oriented Dynamic Analysis �
 ----Execution Pattern Extraction

Feature 1 Feature 2 Feature 3

feature 1 2 3

Execution
Patterns

C1
C15

C4, C10
C18, C20

C3, C8

C1
C15

C4, C10
C18, C20

C23, C28

C1
C15

C33, C38

C1, C4, C3, C8, C4, C15
C1, C2, C3, C8, C16, C15
C1, C5, C3, C8, C4, C10, C18, C20
C1, C7, C3, C8, C20, C13, C15
C1, C4, C3, C8, C9, C15
C1, C3, C8, C4, C10, C17, C18, C20
C1, C3, C8, C4, C10, C18, C20

C1, C4, C23, C28, C20
C1, C2, C23, C28, C15
C1, C5, C23, C28, C4, C10, C18, C20
C1, C7, C23, C28, C20, C13, C15
C1, C4, C23, C28, C9, , C4, C10, C15
C1, C23, C28, C4, C10, C17, C18, C20

C1, C4, C33, C38, C4, C15
C1, C2, C33, C38, C16, C15
C1, C5, C33, C38, C15
C1, C7, C33, C38, C20, C13, C15
C1, C4, C33, C38, C9, C15
C1, C9, C33, C38, C10, C15

Common pattern

Feature-specific
pattern

Noise pattern

Execution Traces for 3 Feature-specific Scenario Sets

10

Static Analysis

Two-Phase Design Pattern Detection

11

Describe Design Pattern using PDL

Ø  Different types of the classes in PDL
n  Main-seed class, Depth1 class, Depth2 class and Seed-depth1 class

 Example:

1 Begin-PDL
2 Pattern: TargetPattern
3 Main-seed class: MainSeedClass
4 Depth1:
5 Inherit_From:
6 Depth1-SuperClass1
7 Inherited_By:
8 Depth1-SubClass1;
9 Depth1-SubClass2
10 in_Association:
11 Depth1-AssoClass
12 Depth2:
13 Seed-Depth1 : Depth1-AssoClass
14 Inherited_By:
15 Depth2-SubClass1
16 End-Pattern
17 End-PDL

Depth2-SubClass1

Depth1-SuperClass1

 MainSeedClass Depth1-AssoClass

Depth1-Subclass1 Depth1-Subclass1

Class diagram of a target
design pattern

PDL Representation of a
target design pattern

12

16-01-02

3

Two-phase Design Pattern Detection Process

 Subject
 System

 Obtain inter-class
relations by parsing
the Subject System

a list of source-
class clusters

Depth1Matching

Depth2Matching

Set of all combinations of
matched source-classes
of all depth1-classes

Set of all combinations of
matched source-classes
of all depth2-classes

Design Pattern
Repository

Approximate
 Matching

Merge Depth1
combination and
Depth2 combination

Identified design
pattern instances

Relation
matrices

Depth1Matching

Structural
Matching

13

Two-phase Design Pattern Detection�
----Approximate Matching

Ø  Attribute Vector
n  The attribute vector includes the following items:

n  Number of Inherit _From / Inherited_By relation
n  Number of in _Association / out _Association relation
n  Number of isAbstract relation (0 or 1)

Ø  Similarity Function
 Given the attribute vector of the main-seed class
 and the attribute vector of and a source-class ,
 the approximate similarity function is defined as:

Ø  Result: a group of source-class clusters

Ø  Depth1Matching
n  Input: a source-class cluster, a candidate main-seed class, and a target

design pattern .
n  Output: set of all combinations of matched source-classes of all the

depth1-classes.

Ø  Depth2Matching
n  Input: a source-class cluster, a combination of matched source-classes of

all the depth1-classes and a target design pattern .
n  Output: set of instances of the target design pattern.

Identifying all the instances of the target design pattern within a
source-class cluster.

Two-phase Design Pattern Detection
----Structural Matching

15

 An Example

Class diagram of Bridge
Design Pattern

PDL representation of
Bridge Design Pattern

1 Begin-PDL
2 Pattern: Bridge
3 Main-seed class: Implementor
4 Depth1:
5 Inherited_By:
6  ConcreteImplementorA;
7 ConcreteImplementorB
8 in_Association:
9 Abstraction
10 Depth2:
11 Seed-Depth1 : Abstraction
12 Inherited_By:
13 RefinedAbstraction
14 AbstractClass:
15 Implementor;
16 Abstraction
17 End-Pattern
18 End-PDL

Attribute Vector

Attr_Vec (Implementor) = [0, 2, 1, 0, 1]

RefinedAbstraction

 Implementor Abstraction

ConcreteImplementorA ConcreteImplementorB

16

 An Example…

Search Space

Through applying approximate matching on the search space, we
obtain two candidates of main-seed class C2 and C3.

Attr_Vec(C2)=[1, 2, 1, 1, 1]
Attr_Vec(C3)=[1, 2, 1, 1, 1]

Attr_Vec (Implementor) = [0, 2, 1, 0, 1] 17

An Example…

Ø  Depth1Matching

RefinedAbstraction

 Implementor Abstraction

ConcreteImplementorA ConcreteImplementorB

Class diagram of Bridge
Design Pattern

A source-class cluster

18

16-01-02

4

 Experiments with JHotDraw System
Ø  Statistics of three versions of JHotDraw systems

Ø  The experimental results of execution pattern extraction

Legend : A / B / C A: data for JHotDraw 5.1 B: data for JHotDraw 6.0b1 C: data for JHotDraw 7.0.7 19

Concept lattice representation of features and classes in JHotDraw 5.1

Experiments with�
JHotDraw System

20

Experiments with�
JHotDraw System …

Results of feature-specific classes assignment for 10 features of JHotDraw
5.1

21
The Execution Trace for scenario“Drawing and Flipping Rectangle” is

Annotated with Descriptions of Execution Patterns.

Experiments with�
JHotDraw …

Results of identified Adapter design pattern instances and related features
in JHotDraw 5.1 system

22

Summary

 We presented:
n  A methodology to identify individual design pattern instances from the

implementation of system behavioural features.

n  A new design pattern representation, PDL (Pattern Description
Language), which enables users to describe the structural information
of design patterns efficiently and conveniently.

n  A two-phase design pattern process (approximate matching & structure
matching) to reduce the complexity of the matching process

n  A prototype toolkit for the proposed approach on the Eclipse open
platform.

23

Future Work

 Our future work will mainly concentrate on the following
directions:
n  Extending the pattern repository to support more design patterns

identification.

n  Extracting more inter-class relations, such as delegation and method
invocation, to improve the accuracy of the technique.

n  Validating our approach on large-scale software systems.

n  Tracking the evolution of software systems at design level by
analyzing the evolution of design patterns.

24

16-01-02

5

Dynamic Analysis and Design Pattern Detection
in Java Programs

Department of Computing and Software

McMaster University
Canada

SEKE’08

July 3, 2008

Lei Hu
Kamran Sartipi

{hul4, sartipi}@mcmaster.ca

25

