16-01-02

Dynamic Analysis and Design Pattern Detection Outli
in Java Programs utiine
I
Lei Hu L
Kamran Sartipi » Motivation
- » Research Problem Definition and Solution
{hul4, sartipi)@mcmaster.ca . .
* » Proposed Framework for Feature-Oriented Design Pattern
1 Detection
» Feature-oriented Dynamic Analysis
Department of Computing and Software » Two-phase Design Pattern Detection Process
McMaster University » Case studies on Three Versions of JHotDraw Systems
Canada » Contribution
MCMHStGI‘ SEKE’ 08
University
W July 3, 2008
Inspiring Inaovation and Discovery 1 2

{ Motivation * Research Definition
|

» Software product line is a group of software-intensive systems that share » Research Agenda:
a common set of features to satisfy the specific needs from the market. = To devise a methodology and supporting tools for recovering the
= Developed based on a reference architecture which consists of common instances of design patterns from the implementation of software
parts and variable parts. system’s behavioural features, by the means of a high level pattern

description method.
» An evolutionary development of a software product line starts from
reverse engineering activities. . A

= Understanding the existing systems > Provided Solution:
= Locating common features to reuse = We propose a reverse engineering framework which combines

.) = feature-oriented dynamic analysis with
» Design pattern recovery can support the construction of software

product line. = two-phase design pattern detection technique
= Understanding the existing system at design level to identify the instances of design patterns for different software
= Reusing the existing system’s design artefacts behavioural features.
3 4

* Foundation of Reverse Engineering

I
» Reverse Engineering

A process of analyzing a software system to identify a system’s components
and their interrelationships, and create representation of the system at a

higher level of abstraction. [Chikofsky&

» Two major sub-areas in Reverse Engineering
= Static Analysis
= Clustering
= Visualization
= Pattern Matching (Design Pattern Recovery)
= Dynamic Analysis
= Feature identification
= Behavioural design model extraction

16-01-02

f
: I
: Dynamic Analysis
: Feature-Oriented Dynamic Analysis
'
H 7 8
Feature-Oriented Dynamic Analysis Feature-Oriented Dynamic Analysis
-——=Execution Traces Generation ----Execution Pattern Extraction
I
Using Eclipse Test and Performance Tools Platform (TPTP) to collect the execution Execution Traces for 3 Feature-specific Scenario Sets
ces generated by running the scenarios in the feature-specific scenario set.
Feature 1 Feature 2 Feature 3
. €1,C4,C3,C8,C4,CI5 C1,04,023,C28,C20 .C4,C33,C38,C4,C15
» Reducing execution trace size using filfer set mechanism e : C1.C2, €23, C28.C15 (38, C16,C15
C1,C5,C3,C8,C4,C10,C18,C20 | €28,C4,C10,C18, C2 . C38,CI5
€1,€7,C3,C8, €20, C13,C15 C 3, C28,C20,C13,C15 ,C7,C33,C38,€20,C13, C15
€1,04,C3,C8,€9,CI5 e €28,09,,C4,C10,CI5 . C38,C9,CI5
-ution traces ,C3,C8, C4, C10,C17, C18. C20 L C4, C10,C17, C18, €20 . C38,C10,C15
Feature-Specific Scenario Set TPTP Execution traces c .C3,C8,C4,C10,C18 20 ‘ '

On Eclipse

- Start, Draw an Ellipse, -, Exit

1, Draw a Line, 5 Exit

Running the

R . . . system in a feature 1 2 3
- Start, Draw a Rectangle, , Exit profiling mode
= Exccution [t—— Common pattern
- Start, Draw a Polygon, , Exit Patterns cls cls cis
c4.cl0 c4,C10 4— Noise pattern
Apply Sequential Pattern Mining C3C8 C23,C28 C33,C38 4— Feature-specific
to generate Execution Patterns 9 pattern 10
Describe Design Pattern using PDL
! » Different types of the classes in PDL
= Main-seed class, Depthl class, Depth2 class and Seed-depthl class
Example:
Class diagram of a target PDL Representation of a
. . design pattern target design pattern
Static Analysis
— ! 2 pattem: TargetPattom
. . A 3 Main-seed class: MainSeedClass
Two-Phase Design Pattern Detection [Depthi:
' 5 Inherit_From:
6 Depth1-SuperClass1
7 Inherited_By:
! g Depth1-SubClass1;
: 9 Depth1-SubClass2
f 10 in_Association:
1 1 Depth1-AssoClass
Vo2 Depth2:
HERE] Seed-Depth : Depth1-AssoClass
14 Inherited_By:
[[Deptnt-Sunctasst | [oeptht-subciasst | 1 15 " Dopth-SubCiasst
I | 1L 1 | 16 End-Pattern
1 | 17 End-PDL 12
1

16-01-02

Two-phase Design Pattern Detection Process

Relation
‘matrices

Approximate

Su
B Matching

y i
Structural Set of all combinations of
Matching matched source-classes
of all depth1:-classes

maiched source-classes
of all depth2-classes

Depth2 combination

Two-phase Design Pattern Detection

----Approximate Matching

» Attribute Vector
= The attribute vector includes the following items:
= Number of Inherit_From / Inherited By relation
= Number of in _Association / out _Association relation
= Number of isAbstract relation (0 or 1)

Similarity Function

N

Given the attribute vector Attr_Vec(c™) = [ay

..... ag] of the main-seed class ¢™*
and the attribute vector Attr_Vec(c;) = [by,....bx] of and a source-class ¢; ,
the approximate similarity function is defined as:
SiMape (Attr_Vec(c;), Attr_Vec(c™)) =
{ A(Attr_Vec(c;), Attr Vec(c™)) Attr Vec(c;) > Attr_Vee(c™)
0 otherwise

k_y(Attr;(c;)—Attr,
where A(Attr Vec(c;), Attr Vec(c™)) =1 — Lgos (Attnj (e0) —Attry (c))

S, Attr; ()

> Result: a group of source-class clusters

Two-phase Design Pattern Detection

---=Structural Matching

Identifying all the instances of the target design pattern within a

source-class cluster.

» DepthlMatching

An Example

diagram of Bridge

PDL representation of
sign Pattern

Bridge Design Pattern

Begin-PDL

1
2 Pattern: Brid;
I Aracion [g 2 Pt bridge
= Input: asource-class cluster, a candidate main-seed class, and a target | [] Main-seed class: Implementor
design pattern . 4 Depthi:
5 Inherited_By:
= Output: set of all combinations of matched source-classes of all the 6 ConcretelmplementorA;
depthl-classes. 7 ConcretelmplementorB
I I ” I 8 in_Association:
11 I 1o Abstraction
» Depth2Matching 10 Depth2:)
Attribute Vector 11 Seed-Depth1 : Abstraction
= Input: a source-class cluster, a combination of matched source-classes of 12 Inherited_By:
all the depthl-classes and a target design pattern . Attr_Vec (Implementor) = [0, 2, 1,0, 1] 13 RefinedAbstraction
= Output: set of instances of the target design pattern 14 AbstractClass:
put: 8 gn p: . 15 Implementor;
16 Abstraction
17 End-Pattern
1 18 End-PDL 16
* An Example... An Example...
| .
ar ac » Depth1Matching
Class diagram of Bridge
Design Pattern
Abstraction Implementor
I I
: It
Tmplementor Abstrac- Concrete- Concrete-
- - - (main-seed class) tion ImplementorA | ImplementorB
Through applying approximate matching on the search space, we o 2 cn Ciz
obtain two candidates of main-seed C2 and C3. 2 [C12 c11
Attr_Vec(C2)=[1,2, 1,1, 1]
Attr_Vec(C3)=[1,2,1,1,1]
Attr_Vec (Implementor) = [0, 2,1, 0, 1] 17 18

16-01-02

* Experiments with JHotDraw System

» Statistics of three versions of JHotDraw systems

Systems | Version | # Classes | #Files | #LOC
THotDraw | 5.1 172 141 8419

THotDraw | 6.0b1 105 289 21001
THotDraw | 7.0.7 331 300 32122

» The experimental results of execution pattern extraction

Specific Feature | Number of Average Average Pruned Number of Average
of JHotDraw | Scenarios Trace Size Trace Size | Extracted Patterns | Pattern Size
Rectangle 77| 20174880 /11962 | 027 /2165 /2110 | 13724/ %8 126 / 170 / 220
Round Rectangle | 4/4/4 | 2360 / 5040 / 10620 15/%/19 153 /138 / 183
Ellipse 4/4/4 | 21045492 / 10580 112 /185 /175
Polygon 4744 | 4553 /15760 / 17130 | 1654 / 4020 / 3142 | 21 / 41/ 38 17109 /102 /130
Line 4/4/4 | 14304253 /0882 | 546/ 2224 /2123 |7/24] 21 157 /170 / 126
Move 4/4/4 |2500/4930 /11341 | 774/ 2688 /2487 | 18/34/52 31789737
Delete 1/4/4 | 13235730 /8540 | 623/ 2456 /060 |16 /32 /24 36 /80 /49
Group 5/5/5 | &1 /129(5, 33921 | 1307 / 4675 / 4342 | 36 / 66 / 5T 26 /85 / 49
LineConnection | 4 /4 /4 5238 / 10356 / 24075 | 1681 / 4158 / 4437 | 38 /53 / 56 136 /78 /73
Text 47474 | 152476074/ 18620 | 78172435 /2204 | 11/35/12 62 /105 / 288

Legend: A/ B/ C A:datafor JHotDraw 5.1 B: data for JHotDraw 6.0b1 C: data for JHn!Drnw17g).7

Experiments with
JHotDraw System

T 1
— - Jiracthandi= |

chiifadrawistandardilocatorhandie pr-mmknr |

—
-
‘

- 20

Experiments with
JHotDraw System

Results of feature-specific classes assignment for 10 features of JHotDraw

5.1

Specific Feature-specific
Features Classes

Draw a Rectangle RectangleFigure

Draw a RoundRectangle | RoundRectangleFigure, RadiusHandle
Draw an Ellipse EllipscFigure

PolygonHandle, PolygonTool, PolygonFigure, PolygonScaleHan-
dle, Select AreaTracker

Draw a Toxt ToxtTool, FontSizeHandle, Floating TextField, TextFigure
Group Figures GroupHandle, GroupFigure, GroupCommand

Move a Figure SouthEastHandle, SouthHandle, NorthHandle, EastHandle,
WestHandle, SouthWestHandle, NorthEastHandle, NorthWest-
Handle, RelativeLocator, BoxHandleKit

Delete o Figure FigureTransferCommand, DeleteCommand

Draw a Line PolylineLocator, PolylineFigure, LincFigure, PolylincHandle

Draw a Dolygon

Draw a LineConnection | Lineconnection, AbstractConnector, ConnectionTool, ArrowTip

21

Experiments with
JHotDraw

Results of identified Adapter design pattern instances and related features
in JHotDraw 5.1 system

Design Pattern Instance Related Feature
CI/ifa/draw/ figures /PolyLineligure (Target)
res/LineConnection (Adapter) Draw a Line

CH/ifa/draw/framework/Connector (Adaptee)

Draw a RoundRectangleFigure

= tHandle (T:
CH/ifa/draw/contrib/PolygonHandle (Adapter)
CH/ifa/draw/framework/Locator (Adaptee)
CH/ifa/draw/standard/ Abstract Tool (Larget)
CH/ifa/draw/contrib/PolygonTool (Adapter)
CH/ifa/draw/contrib/PolygonFigure (Adaptee)
CH /ifa/dr:
CI/ifa/draw/figures/GroupCommand (Adapter) Group figures

Draw a Polygon

Draw a Polygon

CII/xm/dnm /Tramework/Connector (Tkuw)
ractConnector (Adapter)
<, H /ifa/draw/framework/Figure (Adaptee)
CH /ifa/draw/framework/ConnectionFigure (Target)
CH/ifa/draw/figures/LineConnection (Adapter)
/ifa/draw/framework /Connector (Adaptee)

Draw a LineConnection

Draw a LineConnection

Draw a LineConnection 22

=
CLLifa/ dra framescork) Conmector (Adaptee)

* Summary
e

We presented:
= A methodology to identify individual design pattern instances from the
implementation of system behavioural features.

A new design pattern representation, PDL (Pattern Description
Language), which enables users to describe the structural information
of design patterns efficiently and conveniently.

A two-phase design pattern process (approximate matching & structure
matching) to reduce the complexity of the matching process

A prototype toolkit for the proposed approach on the Eclipse open
platform.

23

* Future Work

Our future work will mainly concentrate on the following
directions:

= Extending the pattern repository to support more design patterns
identification.

= Extracting more inter-class relations, such as delegation and method
invocation, to improve the accuracy of the technique.

Validating our approach on large-scale software systems.

Tracking the evolution of software systems at design level by
analyzing the evolution of design patterns.

24

Dynamic Analysis and Design Pattern Detection
in Java Programs

Lei Hu
Kamran Sartipi

* {hul4, sartipi)@mcmaster.ca

Department of Computing and Sofiware

McMaster University
Canada
McMaster ,
University g9 SEKE’ 08
W July 3, 2008

saovation and Discovery 25

16-01-02

