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{ Motivation * Research Definition
|

» Software product line is a group of software-intensive systems that share » Research Agenda:
a common set of features to satisfy the specific needs from the market. = To devise a methodology and supporting tools for recovering the
= Developed based on a reference architecture which consists of common instances of design patterns from the implementation of software
parts and variable parts. system’s behavioural features, by the means of a high level pattern

description method.
» An evolutionary development of a software product line starts from
reverse engineering activities. . A

= Understanding the existing systems > Provided Solution:
= Locating common features to reuse = We propose a reverse engineering framework which combines

. ) = feature-oriented dynamic analysis with
» Design pattern recovery can support the construction of software

product line. = two-phase design pattern detection technique
= Understanding the existing system at design level to identify the instances of design patterns for different software
= Reusing the existing system’s design artefacts behavioural features.
3 4

* Foundation of Reverse Engineering

I
» Reverse Engineering

A process of analyzing a software system to identify a system’s components
and their interrelationships, and create representation of the system at a

higher level of abstraction. [Chikofsky&

» Two major sub-areas in Reverse Engineering
= Static Analysis
= Clustering
= Visualization
= Pattern Matching (Design Pattern Recovery)
= Dynamic Analysis
= Feature identification
= Behavioural design model extraction
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: I
: Dynamic Analysis
: Feature-Oriented Dynamic Analysis
'
H 7 8
Feature-Oriented Dynamic Analysis Feature-Oriented Dynamic Analysis
-——=Execution Traces Generation ----Execution Pattern Extraction
I
Using Eclipse Test and Performance Tools Platform (TPTP) to collect the execution Execution Traces for 3 Feature-specific Scenario Sets
ces generated by running the scenarios in the feature-specific scenario set.
Feature 1 Feature 2 Feature 3
. . . . . €1,C4,C3,C8,C4,CI5 C1,04,023,C28,C20 .C4,C33,C38,C4,C15
» Reducing execution trace size using filfer set mechanism e : C1.C2, €23, C28.C15 (38, C16,C15
C1,C5,C3,C8,C4,C10,C18,C20 | €28,C4,C10,C18, C2 . C38,CI5
€1,€7,C3,C8, €20, C13,C15 C 3, C28,C20,C13,C15 ,C7,C33,C38,€20,C13, C15
€1,04,C3,C8,€9,CI5 e €28,09,,C4,C10,CI5 . C38,C9,CI5
-ution traces ,C3,C8, C4, C10,C17, C18. C20 L C4, C10,C17, C18, €20 . C38,C10,C15
Feature-Specific Scenario Set TPTP Execution traces c .C3,C8,C4,C10,C18 20 ‘ '

On Eclipse

- Start, Draw an Ellipse, -, Exit

1, Draw a Line, 5 Exit

Running the

R . . . system in a feature 1 2 3
- Start, Draw a Rectangle, , Exit profiling mode
= Exccution [ t—— Common pattern
- Start, Draw a Polygon, , Exit Patterns cls cls cis
c4.cl0 c4,C10 4— Noise pattern
Apply Sequential Pattern Mining C3C8 C23,C28 C33,C38 4— Feature-specific
to generate Execution Patterns 9 pattern 10
Describe Design Pattern using PDL
! » Different types of the classes in PDL
= Main-seed class, Depthl class, Depth2 class and Seed-depthl class
Example:
Class diagram of a target PDL Representation of a
. . design pattern target design pattern
Static Analysis
— ! 2 pattem: TargetPattom
. . A 3 Main-seed class: MainSeedClass
Two-Phase Design Pattern Detection [ Depthi:
' 5 Inherit_From:
6 Depth1-SuperClass1
7 Inherited_By:
! g Depth1-SubClass1;
: 9 Depth1-SubClass2
f 10 in_Association:
1 1 Depth1-AssoClass
Vo2 Depth2:
HERE] Seed-Depth : Depth1-AssoClass
14 Inherited_By:
[[Deptnt-Sunctasst | [oeptht-subciasst | 1 15 " Dopth-SubCiasst
I | 1L 1 | 16 End-Pattern
1 | 17 End-PDL 12
1
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Two-phase Design Pattern Detection Process

Relation
‘matrices

Approximate

Su
B Matching

y i
Structural Set of all combinations of
Matching matched source-classes
of all depth1:-classes

maiched source-classes
of all depth2-classes

Depth2 combination

Two-phase Design Pattern Detection

----Approximate Matching

» Attribute Vector
= The attribute vector includes the following items:
= Number of Inherit_From / Inherited By relation
= Number of in _Association / out _Association relation
= Number of isAbstract relation (0 or 1)

Similarity Function

N

Given the attribute vector Attr_Vec(c™) = [ay

..... ag] of the main-seed class ¢™*
and the attribute vector Attr_Vec(c;) = [by,....bx] of and a source-class ¢; ,
the approximate similarity function is defined as:
SiMape (Attr_Vec(c;), Attr_Vec(c™)) =
{ A(Attr_Vec(c;), Attr Vec(c™))  Attr Vec(c;) > Attr_Vee(c™)
0 otherwise

k_y(Attr;(c;)—Attr,
where A(Attr Vec(c;), Attr Vec(c™)) =1 — Lgos (Attnj (e0) —Attry (c))

S, Attr; ()

> Result: a group of source-class clusters

Two-phase Design Pattern Detection

---=Structural Matching

Identifying all the instances of the target design pattern within a

source-class cluster.

» DepthlMatching

An Example

diagram of Bridge

PDL representation of
sign Pattern

Bridge Design Pattern

Begin-PDL

1
2 Pattern: Brid;
I Aracion [ g 2 Pt bridge
= Input: asource-class cluster, a candidate main-seed class, and a target | [ ] Main-seed class: Implementor
design pattern . 4 Depthi:
5 Inherited_By:
= Output: set of all combinations of matched source-classes of all the 6 ConcretelmplementorA;
depthl-classes. 7 ConcretelmplementorB
I I ” I 8 in_Association:
11 I 1o Abstraction
» Depth2Matching 10 Depth2: )
Attribute Vector 11 Seed-Depth1 : Abstraction
= Input: a source-class cluster, a combination of matched source-classes of 12 Inherited_By:
all the depthl-classes and a target design pattern . Attr_Vec (Implementor) = [0, 2, 1,0, 1] 13 RefinedAbstraction
= Output: set of instances of the target design pattern 14 AbstractClass:
put: 8 gn p: . 15 Implementor;
16 Abstraction
17 End-Pattern
1 18 End-PDL 16
* An Example... An Example...
| .
ar ac » Depth1Matching
Class diagram of Bridge
Design Pattern
Abstraction Implementor
I I
: It
Tmplementor Abstrac- Concrete- Concrete-
- - - (main-seed class) tion ImplementorA | ImplementorB
Through applying approximate matching on the search space, we o 2 cn Ciz
obtain two candidates of main-seed C2 and C3. 2 [ C12 c11
Attr_Vec(C2)=[1,2, 1,1, 1]
Attr_Vec(C3)=[1,2,1,1,1]
Attr_Vec (Implementor) = [0, 2,1, 0, 1] 17 18
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* Experiments with JHotDraw System

» Statistics of three versions of JHotDraw systems

Systems | Version | # Classes | #Files | #LOC
THotDraw | 5.1 172 141 8419

THotDraw | 6.0b1 105 289 21001
THotDraw | 7.0.7 331 300 32122

» The experimental results of execution pattern extraction

Specific Feature | Number of Average Average Pruned Number of Average
of JHotDraw | Scenarios Trace Size Trace Size | Extracted Patterns | Pattern Size
Rectangle 77| 20174880 /11962 | 027 /2165 /2110 | 13724/ %8 126 / 170 / 220
Round Rectangle | 4/4/4 | 2360 / 5040 / 10620 15/%/19 153 /138 / 183
Ellipse 4/4/4 | 21045492 / 10580 112 /185 /175
Polygon 4744 | 4553 /15760 / 17130 | 1654 / 4020 / 3142 | 21 / 41/ 38 17109 /102 /130
Line 4/4/4 | 14304253 /0882 | 546/ 2224 /2123 |7/24] 21 157 /170 / 126
Move 4/4/4  |2500/4930 /11341 | 774/ 2688 /2487 | 18/34/52 31789737
Delete 1/4/4 | 13235730 /8540 | 623/ 2456 /060 |16 /32 /24 36 /80 /49
Group 5/5/5 | &1 /129(5, 33921 | 1307 / 4675 / 4342 | 36 / 66 / 5T 26 /85 / 49
LineConnection | 4 /4 /4 5238 / 10356 / 24075 | 1681 / 4158 / 4437 | 38 /53 / 56 136 /78 /73
Text 47474 | 152476074/ 18620 | 78172435 /2204 | 11/35/12 62 /105 / 288

Legend: A/ B/ C A:datafor JHotDraw 5.1 B: data for JHotDraw 6.0b1 C: data for JHn!Drnw17g).7

Experiments with
JHotDraw System

T 1
— - Jiracthandi= |

chiifadrawistandardilocatorhandie pr-mmknr |
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Experiments with
JHotDraw System

Results of feature-specific classes assignment for 10 features of JHotDraw

5.1

Specific Feature-specific
Features Classes

Draw a Rectangle RectangleFigure

Draw a RoundRectangle | RoundRectangleFigure, RadiusHandle
Draw an Ellipse EllipscFigure

PolygonHandle, PolygonTool, PolygonFigure, PolygonScaleHan-
dle, Select AreaTracker

Draw a Toxt ToxtTool, FontSizeHandle, Floating TextField, TextFigure
Group Figures GroupHandle, GroupFigure, GroupCommand

Move a Figure SouthEastHandle, SouthHandle, NorthHandle, EastHandle,
WestHandle, SouthWestHandle, NorthEastHandle, NorthWest-
Handle, RelativeLocator, BoxHandleKit

Delete o Figure FigureTransferCommand, DeleteCommand

Draw a Line PolylineLocator, PolylineFigure, LincFigure, PolylincHandle

Draw a Dolygon

Draw a LineConnection | Lineconnection, AbstractConnector, ConnectionTool, ArrowTip
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Experiments with
JHotDraw

Results of identified Adapter design pattern instances and related features
in JHotDraw 5.1 system

Design Pattern Instance Related Feature
CI/ifa/draw/ figures /PolyLineligure (Target)
res/LineConnection (Adapter) Draw a Line

CH/ifa/draw/framework/Connector (Adaptee)

Draw a RoundRectangleFigure

= tHandle (T:
CH/ifa/draw/contrib/PolygonHandle (Adapter)
CH/ifa/draw/framework/Locator (Adaptee)
CH/ifa/draw/standard/ Abstract Tool (Larget)
CH/ifa/draw/contrib/PolygonTool (Adapter)
CH/ifa/draw/contrib/PolygonFigure (Adaptee)
CH /ifa/dr:
CI/ifa/draw/figures/GroupCommand (Adapter) Group figures

Draw a Polygon

Draw a Polygon

CII/xm/dnm /Tramework/Connector (Tkuw )
ractConnector (Adapter)
<, H /ifa/draw/framework/Figure (Adaptee)
CH /ifa/draw/framework/ConnectionFigure (Target)
CH/ifa/draw/figures/LineConnection (Adapter)
/ifa/draw/framework /Connector (Adaptee)

Draw a LineConnection

Draw a LineConnection

Draw a LineConnection 22

=
CLLifa/ dra framescork) Conmector (Adaptee)

* Summary
e

We presented:
= A methodology to identify individual design pattern instances from the
implementation of system behavioural features.

A new design pattern representation, PDL (Pattern Description
Language), which enables users to describe the structural information
of design patterns efficiently and conveniently.

A two-phase design pattern process (approximate matching & structure
matching) to reduce the complexity of the matching process

A prototype toolkit for the proposed approach on the Eclipse open
platform.
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* Future Work

Our future work will mainly concentrate on the following
directions:

= Extending the pattern repository to support more design patterns
identification.

= Extracting more inter-class relations, such as delegation and method
invocation, to improve the accuracy of the technique.

Validating our approach on large-scale software systems.

Tracking the evolution of software systems at design level by
analyzing the evolution of design patterns.

24
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