Mathematical Appendix
A. SECOND MOMENTS

Many of the asset pricing relationships include the second statistical moment between two random variables.
Thus, we will look here at different ways of expressing the second moment: variance and covariance, correlation
coefficient, and beta. We will also derive a linearity rule of manipulating covariances and consider some other
convenient properties of covariances.

Covariance and Related Definitions

Consider two random variables, X and Y, with means (or “expected values’ or “first moments”) of p, and ..
Then the Covariance between X and Y is given by:

(Al) COV(X, Y) = Oyy = E[(X - ux)(Y - uy)] :

The Variance of arandom variable X, Var (X), isa specia case of the covariance, in which the random variables, here
Xand, areidentical. The Standard Deviation is simply the square root of the variance. Thus:

(A2) o, = [Var(X)]2 = [E(X - w22

To normalize the covariance such that its value must lie between -1 and +1, we define the Correlation
Coefficient between X and Y as:

()
(A3)  p = .
Oy Oy

Another concept related to the covariance is that of the slope of asimple OLS regression line

Y="+8$X:

o

(Ad) B =By =—-
Ox

Clearly, it follows from (A3) and (A4) that p,, = By, (0y/0y).
Manipulating Covariances

Expanding the definition in (A1) we can derive that
Oy = E(XY) - 1, E(X) - U E(Y) + puy Wy, . Thusgiventhat p, = E(Z) for any random variable we then find that:
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(A5) Oy = EXXY) — ey o E(XY) = 0y + Hy Ky

Next we prove the linearity of the covariance operator. Define X = aX; +bX,. Then we can write
Cov(aX; +bX,,Y) = E{[a(X, - “><1) +b(X, - pxz)](y - 1)} asfollowseasily from (Al). Thus,

(A6) Cov(aX; +bX,,Y) =aCov(X},Y) +bCov(X,,Y).
Or, equivalently, o, = aoy y* b Oy v - So, the covariance is alinear operator. Note that as an application of (A6)
we can write Var (aX) = Cov(aX,aX) = a®Var X. Alsonotethat Cov(X +b,Y) = Cov(X,Y).
Lastly, Var (X +Y) = Cov(X+Y,X+Y) = Cov(X, X+Y) +Cov(Y,X+Y). Thus,
(A7)  Var(X+Y)=Var(X) + 2Cov(X,Y) + Var(Y).
Covariance and Matrix Notation
If we assume n equally likely possible outcomes (x;, y;) then (A1) becomes:
1 n n n
(A8)  Cov(X,Y) = ﬁ{[.Elxi —(.Elxi/n)][yi —('Zlyi/n)]}.
i= i= i=
Consider nrandom variables X; Matrix X is defined as the variance-covariance matrix of the X;, having as
its (i, j) element Cov(X;, Xj)and accordingly asits (i, i) element Var (X;). If we now define the vector of random
variables X asx and define X asthe weighted sum of the random variablesX; , with weights s in column vector notation
s, then
X=s"xand
(A9)  [Cov(X,X,), Cov(X,X,),...Cov(X,X.)] =sT Z.
Additionaly,

(A10) Var(X) =sT Zs.

Similarly, an expression for the covariance of two random variables X, and X; which are linear combinations of the
X, with weight vectorss, and s; can be obtained as:

(A11) Cov(X,,Xg) =Sa Z Sg-

To connect the expression of B, in (A4) to the matrix notation used in regression analysis, define X asthe
matrix having asitsfirst column a constant and in the following columnsthe random variables X; and asits rows each
of the possible outcomes for the constant (1s of course) and the X; . Then the vector of OLS regression constant and
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dope coefficientsis found as.

(A12) B = (XX) X'y,
wherey represents the possible outcomes for the random variable Y. It is somewhat tedious but useful to check that,
if we consider asimple regression, including just a constant and one independent variable X, that the slope coefficient
Byy » the second coefficient in the B vector, isgiven asin (A4).
B. SOME USEFUL REGRESSION ANALOGIES

Least Squares with Two Independent Variables

Consider threerandom variables Y, X;, and X, . Supposewe want to related these three variableslinearly such
that:

(B1) Y=a+p, X +B,X, e, E(e) =E(eX) =E(eX,) = 0.

We show by construction that thisis always possible by choosing the coefficients «, ,, B, such that
(B2)  E(e?) = E[(Y - e - B, X - B,X,)%],

isminimized. The first-order conditions for this minimization with respect to the three coefficients are:

(B3  E(Y) - a - B,E(X) - B,E(X,) - O,

(B4) E[X (Y-a-B,X -B,X)] =0,

(B5) E[X (Y -a-B, X -B,X)] =

|
o

Using the notation from Appendix A, we can write (B3) as:

(B6) o« = uy - Brhyg — Bk

and further, using (A5) and (B6), we can write (B4) and (B5) as:

Ox v = POy x Oy v = P10y x
(B?) Bl — 1 > 172 , BZ — xz > 172
% 9%,
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Solving for B, and B, in(B7) yields:

2 2
Oyy Oy — Oy O Oyy Oy — Oy O
(89) B, - vx, 9%, 7 9vx, Ox, %, B, - vx, 0%, 7 Ovx, Ox, %,
1 2 &2 - o2 ' 2 2 2 - o2
Xl XZ X1X2 xl x2 Xlx2

Thus, for any three random variables', X,, and X, (given that the first and second moments exist), we can relate them
linearly asin (B2), with coefficients given in (B6) and (B8), and such that € has zero mean and is uncorrelated with
X, and X, . If, furthermore, the three variables are normally distributed then € is normally distributed as well and is
independent of X, and X, .

Instrumental Variables

Suppose we have alinear relation between random variables X and Y given as.

(B9) Y=a+PX+e, E(eX)=0.
We would liketo find an estimate for f but X and € are correlated (either because of measurement error in X, omitted
variables, or because of asimultaneity problem). OLSwill provide biased and inconsistent estimates. We should use
an instrument Z for X that is uncorrelated with € and preferably highly correlated with X .

To estimate B with the use of the instrument Z we proceed in two steps. First find the decomposition:

(B10) X=y+8Z+n, E(M)=EMNZ) =0, & =o0,,/d.

The part of X that is correlated with € isnow incorporated inn only since Zisby assumption uncorrelated with €. Thus
we only usethe part y + 8Z intheregression. Substituting equation (B10) into equation (B9) yields:

(B1l) Y =a+Py+(BO)Z+Pn+e, E(n) =E(e) =E(nZ) = E(e2).

We can obtain this decomposition as before since Z is uncorrelated with £ by assumption and with n by construction.
The slope coefficient then becomes:

o o o
(B12) Bd-—2- p- -
oo 805 Oxz

The estimate of [ obtained in thisway is still biased (due to the presence of B inthe error term) but is now consistent.
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C. STEIN'SLEMMA AND GENERALIZATION

Satement and Proof of Sein’s Lemma

“Stein’'s Lemma’ provides a linearization result for covariances under a normality assumption when one
argument isa(possible) non-linear function of anormal variable. Assuchitispotentially of great valuein many finance
applications. Nevertheless it is not applied frequently. Huang and Litzenberger (1988) employ it without proof,
referring to a paper by Rubinstein (1974) and crediting the statistician Stein for theresult. Neither referenceis helpful
in providing further information about the Lemma. The Rubinstein application is also without proof but appearsto be
thefirst application of the result in the economicsliterature. Thereferenceto Steinisnot specific and | was unable to
find astatement and proof of theLemma. Ingersoll (1987) however provestheresult without callingit Stein'sLemma.
His proof is given below.

Stein’s Lemma states that:

(C1)  Cov[X,h(Y)] = E[h,(Y)]Cov(X,Y),

where X and Y are bivariate normal; h( ) is a differentiable function; and the subscript Y indicates the (partial)
derivative.
The proof isasfollows. First use a standard decomposition:

(C2) X=a+By,Y+e; E(e) =E(Y) =0, By =04/05.
Such a decomposition exists for any two random variables and is in fact accomplished by an OLS regression. For

normal distributions, the zero correlation between € and Y implies independence. Hence, Cov[e, h(Y)] = 0. Thus,
asfollows from the linearity property (A6) and (C2):

(C3)  Cov[X,h(Y)] = By, Cov[Y,h(Y)].

Given equation (A1) for a continuous distribution and since E{(Y - ) E[h(Y)]} =0, we can write the
covariance between Y and h(Y) as:

(C4)  Cov[Y,h(Y)] = f(Y*HY)h(Y)f(Y)dY,

where |, isthemean of Y; f(Y) isits(normal) density function, which is given as

Y - 2
1 o | - T

C5 f(Y) = ———
©) 1M - o
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From (C5), differentiation yields:

df(y) _ _
dy

Y,
Hy f(Y) .
o

(Ce)
Substituting (C6) into (C4) gives:

(C7)  Cov[Y,h(Y)] = -& }h(Y) df(Y).
now integrate the right-hand side of (C7) b;parts'

(C8) Cov[Y,h(Y)] = 703( f}hY(Y)dY + [h(Y) T .

The last term vanishes at both limits, since the normal density convergesto zero at the limits, aslong as h(Y) does not
go to infinity too fast; or, in other words, aslong as h(Y) = o[exp(Y?)]. Thus,

(C9) Cov[X,h(Y)] = By Cov[Y,h(Y)] = BYxof( E[h,(Y)] .
Stein’s Lemmain (C1) then follows directly from (C9) plus the definition of B, in (C2).
A Multivariate Generalization of Stein’s Lemma

The bivariate generalization of Stein’s Lemmais stated as:

(C10) Cov[X,h(Y,Z)] = E[h,(Y,Z)]Cov(X,Y) + E[h,(Y,Z)]Cov(X,Z) .
Here X, Y, and Z are multivariate norma and h( ) is differentiable in its two arguments. Given the bivariate
generalization, the statement and proof of the multivariate generalization is obvious so we will limit ourselves to
discussing the bivariate case only.

We can express X in terms of the other random variables, using the standard decomposition:

(C11) X=a+P,Y+B,Z+e; E(e) =E(eY) =E(eZ) =0,

B, - Oyx 9z = OzxOyz B, - Ozx Oy ~ Oyx Oyz
Y 2 2 2 ' z 2 2 2 '
Oy0z ~ Oyz Oy0z ~ Oyz

The slope coefficients are anal ogousto thosein amultivariate regression with two independent variables and aconstant
as discussed in Appendix B and are given in (B8). From (C11) and the linearity of the covariance operator we can
obtain:
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(C12) Cov[X,h(Y,Z)] = B, Cov[Y,h(Y,Z)] + B, Cov[Z,h(Y,Z)] .
Now consider the covariance terms on the right-hand side of (C12):

(C13)  Cov[Y,h(Y,Z)] = Cov[Y,h(Y,a, + B, Y +&,)],
with similar conditions asin (C2). Next we show alemma, that:

(C14) Cov[Y,g(Y,e,)] = E[9,(Y,€,)] o5 .

Proof: By construction Y and e, are uncorrelated and, given that both are normally distributed, therefore are
independent. Thus:

© oo

(C15)  Cov[Y,g(Y,¢,)] = ff(Y—pY)g(Y,eZ)fY(Y)fB(sZ)dde,

—00 —oo

wheref () and f?() are normal density functions. Asin (C6):

df"(y) _ _

Y,
Hy £Y(Y).
dy 2

Oy

(C16)

Substitute (C16) into (C15) gives:
(C17) Cov[Y,g(Y,g,)] = - 05;} g(Y,e,) dfY(Y)fe(e,)de.

Integrating by partsthe inner integral gives:

(C18) Cov[Y,g(Y,e,)] =

o

_ O\Z(f - ng(Y, €,) £Y()dY + [g(Y, 8Z)fY(Y)] |\°(°:m fe(e,) de.

— o0

Thefinal term in parentheses vanishesif g(Y,e,) = o[exp(Y?)]. Equation (C18) can then be written as:
(C19) Cov[Y,g(Y,e,)] = o ; }gY(Y, e,) FY(Y)fe(e)dYde,

which is (C14). Now (C13) becomes:
(C208) Cov[Y,h(Y,Z)] = { E[h(Y,2)] + By, E[h,(Y,2)]} o}

and similarly
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(C20b) Cov[Z,h(Y,Z)] = { E[h,(Y.Z)] + B, E[h,(Y,Z)]} o2.
Returning to (C12), using (C208) and (C20b), and using the fact thet B,, = o, /o?, we obtain;
(C21)  Cov[X,h(Y.Z)] = B, (E[h(Y.2)] 6 + E[h,(Y,Z)]oy, |
+ B, (ELh,(Y, 2)] 02 + E[h(Y, Z)]o,, ).
Collecting terms yields:
(C22) Cov[X,h(Y,Z)] = (Byo? + B,0,,) E[h(Y.2)]
+ (B, 07 + Byoy,) E[h,(Y,2)] .

The definitionsof B, and B, in (C11) then produce the desired result as stated in (C10).

D. StocHASTIC DYNAMIC PROGRAMMING
Problem Statement

Consider the following stochastic dynamic decision problem with a finite horizon:

max T-1
(Dl) V(XS!S) = {ut};r:; ES[E: Btisf(xt,U)] )

(D2)  Subjecttor Xx., = 9(X, U, g,,) and f(x;, ) = B(X;)

s
Here () represents the objective function for each period. The agent is assumed to maximize the expected discounted
present value of the objective for each period, where the discount factor B lies between zero and one. The choice
variablein each period is u, is called the control variable whereas the current status of the system is described by the
statevariablex,. Theconstraint describeshow the state variable changes over timeand is called the equation of motion.
The term g, indicates a shock that stochastically impacts the motion of the state variable.

The objective (“bequest” B()) in the final period T depends solely on the value of the state variable at that
point. V() would represent the “indirect utility function” if the objective were utility. In genera it iscalled the value
function. Since the control variable is “maximized out” it depends only on the variables that summarize the current
situation: time and the state variable. Lastly, the problem described here is not the most general. More general
problems may easily be treated analogously. For instance, it is straightforward to think of x, and u, as vectors of state
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and control variables.

A very rigorous discussion of problems of thistype can be found in Stokey and Lucas (1989). Additionally,
Chapter 1 and the Appendix in Sargent (1987) provide additiona materia that help in applying the stochastic dynamic
programming technique to economic problems. Sargent’ streatment is not as rigorous asthat of Stokey and L ucas, but
quite abit easier. The discussion below isloosely based on Sargent (1987).

Backward Induction and the Bellman Equation

The way to analyze the above problem isto “ start at theend”: Since the current decision affects the state for
the next period, it isimportant to know how important this state is for future outcomes. But that is only clear if itis
known what decisions will be made in the future. So the decision rules for later periods must be known in earlier
periodsin order to take optimal decisions. Accordingly, the final decision should be examined first.

In the above decision problem we can write at the time of the final decision:

max

(B3) V(% T-1) = U, [f(X 12 Ur) + BE BOXD)T,

(D4)  Subjectto:r x; = g(x

T-1: U

1 E7)-
Once V(X;_,, T-1) hasbeen obtained, in effect the decision rulefor thefinal period hasbeenincorporated inthevalue
function. It isthen straightforward to go back one more period and obtain:

(D5) V(% ,,T-2) - ”L"’TXZ [f(X ,Up ) + BE, ,V(X ., T-1)],

(D6)  Subjecttor x; ; = g(x

T-2: U

T2 €1 q)-

By induction we can then find for any time period t:

©)  VoRD = g [T w) BEV, D],
(D8)  Subjectto:r X.; = 9(X., U, &, ), and V(x;,T) = B(X;).

The decision problem in equations (D1) and (D2) is equivalent to the decision problem in equations (D7) and (D8).
The recursive method of solving afinite horizon problem in thisway is called Backward Induction. Equation (D7) is
named the Bellman equation after the“inventor” of dynamic programming. It relatesthe current maximum valuetothe
maximum for the objective based on how the current decision affects the current objective and next period’ s state; the
effect on next period’ s state is evaluated for how if affects the maximum value for the next period. Effectively, once
the value function is known, the future is collapsed into one period.

Second-order conditions for each decision are just that the right-hand side of equation (D7) is concave. One
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set of sufficient conditionsisthat the objectivef() isstrictly concavein both the state variable and the control variable,
and that the constraint set described by the equation of motion is convex. Then the value function will be strictly
concave in the state variable and second-order conditions will hold for the decision in each period.

The Infinite Horizon Problem

If welet T - «in decision problem (D1) and (D2) then the bequest function becomes irrelevant (because
B" B() goesto zero). The problem now changesfrom period to period only in asfar asthe state variable changes. Note
that we need to divide the value function by B' in order to render it independent of time. Thus we have:

09 VO = Ty 100w BEVG)],
(D10) Subjectto:r X, = 9(X, U, € 4)-

This problem is called autonomous as it does not depend on time explicitly. Second-order conditions will hold under
the same conditions as in the finite-horizon case, which also imply that the value function is concave. If, in addition,
f( ) is differentiable then the value function is differentiable as well.

Clearly, itis now impossible to apply the method of backward induction. To solvethe decision problem, first
obtain the first-order condition after substituting equation (D10) into (D9):

(D11)  f,(%,U) = ~BE[9,(X U g.1) V(X )]

As there is no terminal condition such as the bequest function in this infinite horizon model, we need to impose a
transversality condition instead. This is essentialy the first-order condition for the “final” period. Consider the
following very informal derivation. In afinal period the future should become unimportant so that the expected
discounted value V,( ) should converge to zero. Alternatively, consider that at the fina period the value of the state
variable should be zero. Thusthe state variable evaluated at its marginal impact on the value function should be zero.
Then equation (D11) would be something like:

(012) UM BTE[x V,(x)] - 0.
Note that normally we can divide both sides of the first-order condition by the discount factor asis donein (D11).
However, inthe case of thetransversality condition, the discount factor hel psto make theterm convergeto zero, aslong
asthe marginal value of the state variable does not go to infinity. Thetermis multiplied by the state variable since the
impact of the state variable can be zero if either its quantity is zero or its (marginal) valueis zero. The transversality
condition can take several different forms; the current version is sufficient to imply an optimum together with the first-
order condition. In practice the transversality condition will hold automatically in most typical decision problems. So
it is not needed in constructing a solution but can just be verified to hold after a solution is obtained.

An additional equation that is often useful in describing the implications of the decision model isthe envelope

R. BALVERS, WEST VIRGINIA UNIVERSITY. 180 FOUNDATIONS OF ASSET PRICING 5/01



APPENDIX

condition obtained by taking the derivative of the value function with respect to the state variable. Asimplied by the
envelope theorem, in taking the derivative the effect of the state variable on the value of the optimal control variable
can beignored. Thus:

(Dl‘?’) Vx(xt) - fx(xt’ ut*) * B Et [gx(xt' ut*’ 8t+1) Vx(xt+1)] ’

where a“*” indicates an optimal value for the control variable. In many cases, the envelope condition can be used
together with the first-order condition to eliminate the expectations term and obtain some direct insights from the
resulting expression.

Solving the Infinite Horizon Problem

In many cases, no closed-form solution for the decision rule and for the value function can be obtained. If a
closed-form solution exists, however, two different methods can be used to find this solution. First, the “guess and
verify” method of undetermined coefficients. Guessafunctional form for the value function and/or the decision rule.
Then verify that (a) the first-order condition, and (b) the envelope condition or the Bellman equation, hold for your
guess. If you can find parametersfor your conjectured functional form such that (a) and (b) hold asidentitiesyou need
only check thetransversality condition and you are done. The solution and value function are unique and you have just
identified each. Note that using the envelope condition rather than the Bellman equation for condition (b) is usually
easier but that a(usually unimportant) constant in thevaluefunction remainsunidentified. Solutionsareusually difficult
to obtain unless the problem is linear-quadratic, in which case the value function becomes quadratic, or unless the
problem has a power function objective and linear or power function constraint, in which case the value function tends
to inherit the power functional form.

The second solution method isto start with any imagined bequest function (such as zero) and start solving the
problem by backward induction. Thereisatheorem (informally proven in our previous discussion) stating that, in the
limit, the value function obtained in this way must be equal to the value function for the infinite horizon problem,
irrespective of the bequest function that you used. In practice, after afew iterations you may discern a pattern that
allows you to guess the value function and employ the first method.

A Linear Equation of Motion

Often the decision problem simplifies significantly if the equation of motion isassumed to belinear. 1n many
applications the equation of motion is naturally linear in the control and the state variable. For instance when wealth
isthe state variableitsnext period valuewill betheinitial wealth minusthe control (consumption) timesamarket return.
For equations of motion that are linear in state and control variable and multiplicative in the same random variable, it
is always possible to combine equations (D13) and (D11) to eliminate the expectations term.

For equationsof motion, and in specific alinear equation of motionit isoften necessary to impose an additional
condition that iscalled theisoperimetric condition or, as Sargent (1987) callsit, the no-Ponzi-games condition. For the
example of wealth, for instance, we have:
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(D14) W, = R,;(W,-¢), fordlt

The isoperimetric condition then is:

lim

(O15) (T

;
(II R W) - 0.
s=t

Note that, only if this condition isimposed, we can solve the first-order difference equation in (D14) as:

(D15) ¢ + (G.y/R,}) + (G /R R.,) + o = W,

That is the present value of consumption equals initial wealth. 1f (D15) does not hold, it is possible to draw down
wealth to become infinitely negative as time goes to infinity and thus consume extra.

E. CONDITIONAL EXPECTATIONSAND THE LAW OF ITERATED EXPECTATIONS

Expectations must always be conditioned on a particular information set. Often thisinformation set includes
only the basic characterization of a distribution or a model; we then take unconditional expectations. Essentially
expectations are taken without use of specific information. If specific relevant information is available, then
mathematical expectations are taken conditional on the information.

Here we prove the Law of Iterated Expectations. This law states essentially that in taking expectations of
expectations, the expectation conditional ontheleast information prevails. Taking expectationsof expectationsisoften
important in economic models. For instance, if one wantsto forecast the actions of others, or if an average of various
conditional expectations must be obtained.

For simplicity we shall first proved the Law of Iterated Expectations for the case when unconditional and
conditional expectationsare combined. Consider forecasting (forming expectations about) variable X with and without
information concerning a correlated variable Y. Then, the Law says.

(Ela E[E(X]Y)] = E(X), and
(Elb) E[E(X)|Y] = E(X).

In words: the unconditional expectation of the conditional expectation of X is equal to the unconditional expectation
of X, and the conditional expectation of the unconditional expectation of X is (also) equal to the unconditional
expectation of X . If you guess what someone with less information than you would do, you base your guess on the
lesser information that the other has -- there is no point in using your own larger information set; if you guess what
someone with more information would do, your guess must be based on your own, smaller, information set.
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To prove (E1) use conditional expectations and Bayes Law. For (Ela):
(E2)  E[E(XIV)] = E[ [ xfy,(xiy)ydx] = [ [ xf (xly)dxf,(y)dy,

xe X yeY xe X

wheref,( ) indicates amarginal, conditional, or ajoint density, with the type and variable revealed by its subscript
By Bayes Law, fny xly) fy(y) = fxy(x,y) ; hence:

(E3)

yeY xeX

f fxfxly(xly)dxfy(y)dy: f fxfxy(x,y)dxdy.

yeY xeX

Changing the order of integration and realizing that f fxy(x,y) dy = f (x):
yeyY

(B4  E[E(XIV)] = [ xf,(x)dx = E(X).

xe X

To prove (E1b) consider that:

(ES)

xe X

E[E(X)]Y] = E[f xf (x) dx|Y] = f f xf, (x) dx f,(y) dy

yeYxe X

f xfx(x)dxf f,(y)dy = f xf (x)dx = E(X).
xeX

yeY xe X

It is easy to prove the more general result now, that:

(E6a) E[E(X|Y,Z)|Y]

E(X]Y), and

(E6b) E[E(X|Y)]Y,Z]

E(X]Y).

Again, the smaller information set dominates. The proof is omitted here sinceit is very similar to the above proof of
the simpler case, but using more complex versions of Bayes'sLaw suchas f,, (xly, 2 f,(y|2) = f . (x,y]|2).
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