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Chapter IX.  Specific Dynamic Asset Pricing Models 

The previous chapter examined properties of dynamic asset pricing in general.  While these models yield

general insights, they are not amenable to empirical testing.  The reason for the Merton ICAPM model is that the set

of variable that may serve as proxies for changes in investment opportunities is too broad.  Essentially, any variable that

forecasts future returns would be priced in the Merton model.  On the other hand, the Breeden CCAPM provides a factor

model with aggregate consumption as the only possible factor. The limitation here is that consumption is very difficult

to observe.  In particular, spending on durable consumption items is not likely to be closely related to durable goods

consumption.  If durable consumption is excluded, the remaining consumption in the form of  spending on nondurables

is  just too smooth.  It is hard to believe that in today’s (developed) economies economic factors seriously restrict

nondurable consumption, consisting mostly of necessities.  The objective in this chapter is to provide some specific

models and theories that provide clear and testable implications. 

1.  PRODUCTION-BASED ASSET PRICING

(a)  The Lucas Asset Pricing Model

T
he Lucas (1978) model is based on a simple endowment economy.  A representative investor maximizes

expected lifetime utility 

(1) ,E0 '4
t'0

$t u (ct ) , 0 < $ < 1

subject to a wealth constraint:  

(2) .'n
i'1

p i
t s i

t%1 % qt bt%1 ' 'n
i'1

(p i
t % d i

t ) s i
t % bt & ct

Here  indicates the price of a share in asset i ,   indicates the number of shares held at the beginning of period t (andp i
t s i

t

thus is not similar to the use of that symbol in previous chapters where it refers to portfolio share),    the price of aqt

discount bond, and  the number of discount bonds held.bt

The assets should be thought of as “trees” bearing dividends in the form of “fruit”.  No other means of

production exists and the fruit is perishable so that it can not be stored and consumed in future periods.  Defining returns

as before,  , the first-order conditions for the risky assets and the riskless asset can be shownR i
t%1 ' (d i

t%1 % p i
t%1 ) / p i

t

to yield:

(3) ,    for all i.Et [ (R i
t%1 & R f

t%1 ) uc (ct%1 )] ' 0

(4) ,     for all i.uc (ct ) ' $ Et [R i
t%1 uc (ct%1 )]
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We will focus first on equation (4) for an asset representing the market portfolio.  This asset should be worth the sum

of the prices of all assets and generate a dividend that equals the dividend for the whole market.

In equilibrium, the demands for all shares should equal their supplies.  But, given the interpretation that share

( represents ownership to a ( share of the dividends, the supply of shares for any asset must equal one.  If there is no

riskless “fruit” technology, then the riskless asset must be in zero net supply under the presumption that, in principle,

borrowing and lending may occur at the same rate.  Thus, in equilibrium:

(5) ,   for all i and t.s i
t ' 1 , bt ' 0

Substituting the equilibrium conditions into equation (2) produces:

(6)  .ct ' 'n
i'1

d i
t ' yt

The second equality follows since dividends are the only form of production and the only source of income in this

endowment economy.  Equation (6), of course, must hold given equation (5) due to Walras’ Law – the goods market must

clear automatically once all other markets clear.

Now apply equation (4) to the market asset:

(7)  ,uc (yt ) ' $ Et [Rt%1 uc ( yt%1 )]

where   ,  with   .Rt%1 / (pt%1 % yt%1 ) / pt 'n
i'1

p i
t / pt

The price of the market asset can thus be found by solving the first order difference equation (7):

(8) .pt ' '4
j'1

$ j Et [ yt% j uc (yt% j ) ] / uc (yt )

Stock market values thus depend on current and future aggregate production levels.  A simpler expression for stock

values is hard to obtain except in special cases.  For log utility we obtain directly from equation (8) that

, so that .  That is, the stock market price is proportional to current aggregatept ' $ yt / (1 & $ ) Rt%1 ' (1 / $ ) yt%1 /yt

production but does not depend on future production.  This is a consequence of the fact that logarithmic preferences

cause individuals to be myopic.  The market return can be motivated based on the idea of intertemporal substitution:

when yt is low, investors want to sell trees in order to consume more now.

To obtain more insight into this issue and the effect of future output on stock market values, consider the effect

of a change in  on :yt% j pt

(9)  .sgn Mpt / Myt% j ' sgn Et [uc (yt% j ) % ucc (yt% j ) yt% j ]

If aggregate production changes are persistent, then further effects will occur in subsequent periods, but all will have the

same sign.  Sufficient conditions for a positive (negative) sign then are that the coefficient of relative risk aversion is
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everywhere less than (larger than) one:

(10) A R
t% j ( yt% j ) / & [ucc (yt% j ) yt% j ] / uc (yt% j )

<
(>)

1 for all yt% j

.6 sgn Mpt / Myt% j
>

(<)
0

The log case is of course the case where the coefficient of relative risk aversion is exactly equal to one.  If the coefficient

of risk aversion is less than one, the value of the future dividend income  , as evaluated at the marginalyt% j uc (yt% j )

benefit of additional current consumption, rises in .  There are two effects:  a straightforward income effect plus ayt% j

substitution effect related to the fact that dividends are less valuable when aggregate  consumption is high with associated

low marginal utility of consumption.  The (intertemporal) substitution effect is bigger when the utility function is “more

concave.”  As a result, with higher risk aversion the sign flips.  More precisely, if the coefficient of risk aversion is larger

than one, the value of the future dividend income and thus the stock market value rises in future output .  This resultyt% j

may explain the puzzling phenomenon that positive news on the growth of future aggregate output tends to lower stock

market values.  In practice, of course, we will observe something like:  “The news of continuing high growth in GDP has

fueled speculation of interest rate increases by the Fed.  As a result, stock prices tumbled.”  A higher interest rate is

similar to an increase in the discount rate for future dividends.

It is straightforward, based on equations (3), (4), and (6), and assuming normality, to derive an asset pricing

equation for each asset analogously to the derivation of the CCAPM:

(11) ,  withµ i
t%1 & r f

t ' $i y ( µ y
t%1 & r f

t )

 .$i y ' Covt (r y
t%1 , r i

t%1 ) / Vart (r y
t%1 )

Here  may represent either the return on an asset perfectly correlated with aggregate production or the growth rater y
t%1

of aggregate production itself.

(b)  The Brock Model

The Lucas “fruit tree” model is a general equilibrium model in the limited sense that it considers the joint

equilibrium implications of all decisions made in the economy.  However, a key variable, production, is exogenous.

Thus, asset prices and returns are explained for exogenously given equilibrium marginal utilities of consumption as in

equation (7).  Another standard model, the life-cycle model of consumption, takes market returns as given exogenously

and explains how marginal utilities of consumption and consumption itself change over time.  Below we consider a third

type of model in which both returns as well as consumption and production levels are explained endogenously, the Brock

model.

Consider a complete markets economy based on Brock (1982) but using the specific example developed in

Balvers, Cosimano, and McDonald (1990).  A representative firm maximizes the expected present value of the dividends

paid to the stockholders.  Investment is assumed to lead to capital with a one period lag but depreciates fully in one
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period of use, that is  .  Production  depends on capital with a random productivity shock  that is seriallyit ' kt%1 yt 2t

uncorrelated.  Thus the firm maximizes:

(12) max   Et '
4

j'0
mt , t% j dt% j

Subject to:

(13)  ,dt ' yt & kt%1

(14)  ,yt ' 2t A e * t k "
t

where  is the stochastic discount factor for each period t + j, based on the starting point at time t;   . mt , t% j mt , t ' 1

Production includes a standard exponential time trend.

The decision problem based on equations (12) - (14) becomes:

(15)  ,V (kt ) '
max
kt%1

yt & kt%1 % Et [mt , t%1 V (kt%1 ) ]

subject to equation (14).  The first-order condition and the envelope condition become:

(16)  ,1 ' Et [mt , t%1 Vk (kt%1 ) ]

(17)  .Vk (kt ) ' " yt / kt

Combining the envelope and first-order condition yields:

(18)  .1 ' " Et [mt , t%1 yt%1 / kt%1 ]

The consumer’s decision problem is very similar to the decision problem in the Lucas model.  First, goods

market equilibrium implies that .  Second, assuming a log utility function implies, following the same steps asct ' dt

in the Lucas model, that:

(19)  .mt , t%1 ' $ uc (ct%1 ) / uc (ct ) 6 mt , t%1 ' $ dt / dt%1

The first equation follows by considering the price of an asset at time t that yields a dividend of one unit at time t+1 and

zero at all other times, plus comparing equations (8) and (12).   Substituting equation (19) into equation (18) yields:

(20) .1 ' " $ Et [(dt / dt%1 ) (yt%1 / kt%1 )]
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Next step is to guess a solution for the value function or for the decision rule.  In this case assume:

(21)  ,kt%1 ' F yt

where F is an undetermined coefficient.  Equation (21) implies from equation (13) that:

(22)  .dt ' (1 & F ) yt

Substitute both equations (21) and (22) into equation (20) to find  , so that:F ' " $

(23) .kt%1 ' " $ yt , ct ' dt ' (1 & " $ ) yt

Aggregate production from equation (14) then becomes:

(24)  .yt%1 ' 2t%1 A e * ( t%1) (" $ )" y "
t

Lastly, since from the consumer decision problem we have  , we find from equation (23) that:Rt%1 ' (1 /$ ) dt%1 / dt

(25)  .Rt%1 ' (1 /$ ) yt%1 / yt

Thus, aggregate production shocks are persistent as follows from equation (24).  A positive technology shock (increase

in  ) raises aggregate production which is spent in part on investment.  As a result the capital stock for the next period2t

is larger which leads to more production in the next period (all else equal).  The reason that higher aggregate production

leads to more investment is that, if all were spent on consumption, the marginal utility of consumption would go down

too far, so that investment, leading to future consumption, is a more profitable alternative.  Stock returns vary to allow

this process, which leads to a smoother consumption sequence, to occur.  If current output is low, consumption will be

low and the marginal utility of consumption high.  Returns for the upcoming period now are expected to be high as shown

in equation (23).  The reason is that in order to generate investment, the returns on investing would have to be high to

entice consumers to investment in a state where marginal utility of consumption is high.  In other words, if current output

is lower, the savings schedule shifts to the left, causing higher returns and lower aggregate investment and savings.  See

Figure 1.

(c)  Predictability of Returns

Taking expectations in equation (25) gives:

(26)  .Et Rt%1 ' (1 /$ ) Et yt%1 / yt
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It , StFigure 1
Stock Returns over the Business Cycle

The effect of a lower level of business activity (such as industrial production) 
on the stock return if business activity is mean reverting.  Lower current 

output and income implies that households are less willing to transfer their 
wealth to future time periods which are presumed to be more plentiful.

Rt+1

StIt 

Effect of 
Lower yt

Market returns can be predicted to the extent that aggregate output is forecastable.  The intuitive reason is that a business

cycle upswing, in the sense that aggregate production for the next period  is expected to increase, leads to a desire to save

less currently.  This is implied by the life cycle hypothesis.  Hence, the demand for stocks falls, raising expected stock

returns for the upcoming period.  No arbitrage opportunities arise since the same is true for all stocks.  In fact, the

stochastic discount factor is changing over time which causes the predictability in returns.  But as long as the proper

stochastic discount factor is used, arbitrage is by definition ruled out.

Balvers, Cosimano, and McDonald (1990) test the implication of the Brock model that stock returns can be

forecast by forecasting aggregate production.  Taking logs in equations (23) and (24) produces:

(27) ,ln yt%1 ' ( % * t % " ln yt % gt%1

(28) rt%1 ' & ln $ % ln yt%1 & ln yt

where the variable definitions are obvious based on equations (23) and (24).  Note that the empirical implications of this

Brock model are quite similar to the implications of the Lucas model.  Both equations (27) and (28) are consistent with

the Lucas model.  The only difference is that the Brock model explicitly implies an equation like (27) whereas in the

Lucas model the stochastic process for aggregate output can be anything.  Of course, the similarity to the Lucas model

also betrays the fact that we are in fact estimating the CCAPM implications for the market return with aggregate

consumption replaced by the less direct but more accurately measured aggregate production variable. 

Combining equations (27) and (28) yields that:

(29) .rt%1 ' (( & ln $ ) % * t % (" & 1) ln yt % gt%1
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In a regression framework, the right-hand side variables pre-date the return on the left-hand side.  The prediction is that

current aggregate production has a negative impact on the market return for the upcoming period.  This follows because

of “trend reversion” in aggregate production – equation (27) implies that, say, positive aggregate output shocks slowly

wear out, causing aggregate output to return to trend.  As a result, anticipated growth in aggregate output would be

unusually low in response to a positive shock, causing expected market returns to be low as well (since households desire

to save more as a means of smoothing consumption).

The empirical results in Balvers, Cosimano, and McDonald (1990), using annual data for the value-weighted

CRSP stock index for the period 1947-1988 and industrial production to proxy for aggregate production are as follows:

(a) the coefficient for the log of industrial production is significantly negative; (b) the R2 is 22% so that there appears

to be significant forecastability in market returns;  (c)  if the expected growth rate is estimated first based on equation

(27) and is then used in equation (28), results are virtually identical to the results of estimating equation (29).  This

suggests that the effect of aggregate production on returns occurs indeed as predicted from equation (28) rather than

through some other unknown mechanism.  Further, (d) the regression R2 rises to 50% if the horizon is extended from one

to five years; and (e) the dividend yield variable (that was shown in earlier work by Fama and French to be important

in forecasting stock returns) becomes insignificant once aggregate production is included in the forecasting regression.

The empirical work thus has focused on the time-series implications of the production-based asset pricing model

(PCAPM).  The results in effect support the CCAPM, together with the presumption that aggregate production is more

accurately measured than aggregate consumption.  The cross-sectional implications of the PCAPM have not been tested

explicitly.  While empirical work has found that GDP growth is a factor in explaining cross-section return differences,

there has been no attempt at a more theory-based test directly from, say, equation (11) and using an approach such as

in Mankiw and Shapiro (1985).

2.  INVESTMENT-BASED ASSET PRICING

C
ochrane (1991) introduced a different perspective on asset pricing by exploiting the link between returns

on physical investment and the returns on the equity asset that lays claim on the returns from physical

investment.  At times the ensuing literature is termed production-based asset pricing but we will use

Cochrane’s (1996) term Investment-Based Asset Pricing.  

(a)  Stock Returns and Physical Investment

Restoy and Rockinger (1994) provide a nice theoretical derivation of the link between stock returns and

investment in a model with adjustment costs.  The model is closely related to the Q-theory of investment but with the

important difference that the stochastic discount factor is allowed to vary over time, whereas the Q-theory models

typically assume a constant risk-free real interest rate as the discount factor.

In the absence of arbitrage opportunities we know that the value of any firm can be given as:

(1)  .Vt ' dt % pt ' Et '
4

j'0
mt , t% j dt% j
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The value of the firm V is equal to current dividends d plus the ex-dividend value of the firm p.  Assume that technology

shocks 2t follow a Markov process and that capital kt does not fully depreciate in one period.   Further assuming that the

firm’s choice variables are labor inputs Lt and physical investment It , the Bellman equation can be written as:

(2)  ,V (kt , 2t ) '
max
It , Lt

dt % Et [mt , t%1 V (kt%1 ) , 2t%1]

where:

(3)  ,dt ' 2t f (kt , Lt ) & wt Lt & It

(4) .kt%1 ' g (kt , It )

The functions f( ), and g( ) are assumed to be homogeneous of degree one.  Dividends paid to equity holders are equal

to production revenue  minus labor costs  and investment.  Next period’s capital stock depends2t f (kt , Lt ) wt Lt

(positively) on the current capital stock and current investment.  Due to installation costs the relation between current

investment and the next-period capital stock is not necessarily proportional.  Note that this firm is not leveraged so that

all net revenues go to the equity holders.  A more detailed model of this type, which also includes retained earnings and

bonds is given in Altug and Labadie (1994, pp.165-168).

The first-order conditions for the firm are:

(5)  ,2t fL (kt , Lt ) ' wt

(6)  .1 ' gI (kt , It ) Et [mt , t%1 Vk (kt%1 , 2t%1 ) ]

The envelope condition produces:

(7)  .Vk (kt , 2t ) ' 2t fk (kt , Lt ) % gk (kt , It ) Et [mt , t%1 Vk (kt%1 , 2t%1 ) ]

Combining equations (6) and (7) yields;

(8) .Vk (kt , 2t ) ' 2t fk (kt , Lt ) % [gk (kt , It ) / gI (kt , It ) ]

Updating equation (8) by one period and substituting into equation (7) gives:

(9)      1 ' gI (kt , It ) Et mt , t%1 { 2t fk (kt , Lt ) % [gk (kt%1 , It%1 ) / gI (kt%1 , It%1 ) ]}

The rest of the derivation of stock returns is necessary to show that the part of the right-hand side of equation

(9) that multiplies the stochastic discount factor is equal to the stock return.  The basic reason that this turns out to be

the case is due to the homogeneity assumptions that guarantee, as we kind of know from Hayashi (1982), that marginal
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Q equals average Q or, similarly, that .Vk ' k V

We know that pt can be written as:

(10) .pt ' Et [mt , t%1 (pt%1 % dt%1 )]

Using equation (3), the homogeneity of f( ), and equation (5) yields:

(11) .pt ' Et {mt , t%1 [pt%1 % 2t%1 fk (kt%1 , Lt%1 ) kt%1 & It%1]}

The homogeneity of g( ) implies that  .  Updating this equation by one period tokt%1 ' gk (kt , It ) kt % gI (kt , It ) It

eliminate investment in equation (11) produces:

pt ' Et mt , t%1 {pt%1 % [2t%1 fk (kt%1 , Lt%1 ) %
gk (kt%1 , It%1 )

gI (kt%1 , It%1 )
] kt%1 &

kt%2

gI (kt%1 , It%1 )
}

Now use equation (9) in the above equation to simplify the middle term.  This gives:

(12) .pt &
kt%1

gI (kt , It )
' Et [mt , t%1 (pt%1 &

kt%2

gI (kt%1 , It%1 )
) ]

Equation (12) can be written as    with .xt ' Et (mt , t%1 xt%1) xt ' pt & [kt%1 / gI (kt , It ) ]

The solution of this first-order difference equation (ruling out bubbles) is simply that xt = 0.

Thus:

(13)  .pt '
kt%1

gI (kt , It )

Without adjustment costs we would of course have   which implies Q = 1.  pt ' kt%1

The gross return on equity can now be written as:

(14)  .Rt%1 '
[kt%2 / gI (kt%1 , It%1 ) ] % dt%1

kt%1 / gI (kt , It )

Employing again the homogeneity of f( ) and g( ) and equation (5) yields:
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(15)  .Rt%1 '
[gk (kt%1 , It%1 ) kt%1 / gI (kt%1 , It%1 ) ] % 2t%1 fk (kt%1 , Lt%1 ) kt%1

kt%1 / gI (kt , It )

Canceling the  term and adding superscripts i to indicate firm-specific differences provides a non-standard assetkt%1

pricing equation:

(16)  .R i
t%1 ' 2i

t%1 f i
k (k i

t%1 , L i
t%1 ) %

g i
k (k i

t%1 , I i
t%1 )

g i
I (k i

t%1 , I i
t%1 )

g i
I (k i

t , I i
t )

Cochrane (1991) obtained equation (16) in the more specific context of a complete markets economy.  His

intuitive derivation of this result is as follows.  The right-hand side of equation (16) represents the physical investment

return of firm i.  It is obtained from a within-firm type of arbitrage:  invest in the current period and then withdraw

enough investment in the next period to keep the capital stock for future periods equal to what it would have been without

the current period investment;  the net payoff per unit extra investment in the current period is the investment return.

It is equal to the output gain for period t+1 per unit of extra investment:  – the marginal effect of[2t%1 fk ( t%1)] gI ( t )

investment on the capital stock times the marginal effect of the capital stock increase in production; plus the gain due

to reduction in period t+1 investment that can occur (to return  capital to its original level) because capital has increased:

 – the marginal effect of investment on capital times the marginal effect of period t+1 capital[gk ( t%1) / gI ( t%1)] gI ( t )

on period t+2 capital divided by how much investment can be reduced in period t+1 to keep capital unchanged.

Some specific functional forms for the f( ) and g( ) functions provide a more concrete and operational asset

pricing equation.  Cochrane (1991) used the following functional forms:

(17) ,f (kt , Lt ) ' mpkt kt % mplt Lt

(18) ,g (kt , It ) ' (1 & * ) { kt % [1 & (( /2) ( It / kt )
2 ] It }

where mpkt  and mplt  are time-varying constants.  Accordingly, equation (16) becomes:

.R i
t%1 ' (1 & * ) 2i

t%1 mpk i
t%1 %

1 % ( ( I i
t%1 /k i

t%1 )3

1 & (3 /2) ( ( I i
t%1 / k i

t%1 )2
[1 & (3 /2)( ( I i

t / k i
t )2 ]

Thus, aside from firm-specific productivity measure and a marginal product of capital measure, firm-specific investment-

to-capital ratios for two periods are necessary to explain the cross-section of returns.

A simpler assumption for the f( ) and  g( ) functions is:

(19) .g (kt , It ) ' (1 & * ) k T
t I 1&T

t , f (kt , Lt ) ' A k "
t L 1 & "

t
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This functional form for the investment installation function makes sense since it implies homogeneity of degree one,

a depreciation rate of *, a positive impact of the existing capital stock and a positive impact of current investment on the

future capital stock.  The return then becomes:

.R i
t%1 ' [(1 &T ) " (y i

t%1 / y i
t ) (y i

t / I i
t ) ] % [T ( I i

t%1 / I i
t ) ]

Thus stock returns are weighted averages of output growth (with the output to investment ratio as part of the weight) and

investment growth.

(b)  Empirical Tests of Investment-Based Asset Pricing

Aside from the aforementioned papers by Cochrane (1991) and Restoy and Rockinger (1994),  not much

attention has been paid to Investment-Based Asset Pricing.  Basu and Vinod (1994) extend the work of Balvers,

Cosimano and McDonald (1990) and Cochrane (1991) to look at the effects of the degree of economies of scale on asset

pricing.  Arroyo (1996) assumes a constant rate for discounting firm profits but extends Cochrane (1991) to consider

differential costs of financing.  All of these papers in their empirical work look only at the risk free asset and the market

asset.

Braun (1991) considers the cross-sectional implications of the investment-based approach by, basically,

estimating equation (16) directly.  Cochrane (1996) also contemplates the cross-sectional implications of the investment-

based approach.  He tests an equation similar to equation (16) above, but derived from a convex adjustment cost

specification rather than the “costly transformation of investment to capital” approach employed by Cochrane (1991)

and Restoy and Rockinger (1994).  Since marginal production costs are assumed constant and there are no technology

shocks, the regression, essentially includes the current and lagged investment-to-capital ratios as explanatory variables

only.  Cochrane then examines the stock returns of the ten deciles based on size from CRSP plus the 3-month T-Bill.

He employs a Generalized Method of Moments (GMM) approach that does not directly incorporate the cross-sectional

variation of investment-to-capital ratios but uses dividend-to-price ratios and the term premium as instruments.  The

complexity of the method makes it difficult to provide a clear assessment of the results, but they appear to be competitive

with other less theoretical approaches.

Theoretically, at least, direct estimation of an equation like equation (16) involves  asset returns that should

differ by firm-specific investment-to-capital ratio.  An approach that is theoretically quite different would insist that, in

complete markets, the MRIS = MRIT (marginal rate of intertemporal substitution equals marginal rate of intertemporal

transformation).  The stochastic discount factor can then directly be set equal to the MRIT which depends on aggregate

production factors rather than the MRIS used in the CCAPM which depends on aggregate consumption.  As production

is presumably measured with less error than consumption, the production-based approach would be expected to perform

better.  The factors would then be related to technology shocks, the capital stock, the labor stock, and other production

factors and could be obtained directly by employing the generalized Stein’s Lemma if normality of the returns is

assumed.  As such, the asset pricing model may provide evidence for or against Real Business Cycle theory.  At this time,

such an approach has not been attempted, neither for U.S. stock returns nor for stock returns across countries.
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3.  THE CONDITIONAL CAPM

A
n implicit assumption of the CAPM is that the market beta is constant over time.  In the derivation of

the standard CAPM this assumption does not enter as there is only one period.  However, in an

intertemporal context a specific assumption about the time series properties of the market beta must

be made.  The conditional CAPM looks at the implications of allowing beta to change over time.

(a)  The Premium Beta

Consider an intertemporal CAPM model that allows betas as well as risk free rate and market premium to

change over time.  This model is based on Jagannathan and Wang (1996). Then we can write in principle:

(1) ,Et&1 r i
t ' r f

t % $i
t&1 Et&1 et

where:  Et&1 et / Et&1 r m
t & r f

t , $i
t&1 ' Covt&1 (r i

t , r m
t ) / Vart&1 (r m

t )

As Jagannathan and Wang point out, based on Merton’s ICAPM, other betas may be important if individuals want to

hedge against changes in the investment opportunity set.  To avoid this complication, assume here that the market

premium of hedging betas is zero so that these can be ignored.

Ideally, asset pricing should take into account the information about the beta and market return at each point

in time.  However, this is difficult and may be practically infeasible.  If we take an easier approach and take unconditional

expectations in equation (1), we obtain:

(2)  ,E r i
t ' r f

t % E $i
t&1 E et % Cov (Et&1 et , $t&1 )

where we used the definition of covariance to obtain the covariance term in equation (2) and also employed the Law of

Iterated Expectations as described in Appendix E.  There is a “standard” effect of the (expected) beta on expected return,

but in addition there is an effect related to the covariance of beta with the expected market return.  This second effect

enters because assets that have higher betas when the expected market risk premium is higher should have higher

expected returns on average.  Note that for the sake of simplicity we assume that a true risk free rate exists so that this

rate moves perfectly predictably over time even though it need not be constant.  The exposition in  Jagannathan and

Wang does not make this assumption.

The conditional beta can be decomposed into three parts by regressing it on the difference between conditional

and unconditional market excess return:

(3) .$i
t&1 ' E $i

t&1 % (i (Et&1 et & E et ) % 0i
t&1

The parts thus are:  (a) the unconditional mean beta; (b) the part that is correlated with the market excess return; and (c)

a part that has mean of zero and is uncorrelated with the market excess return, as follows from the properties of

regression.  It follows by using the regression property that  in equation (2) that:(i ' Cov ($i
t&1 , Et&1 et ) / Var (Et&1 et )
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(4)  .E r i
t ' r f

t % E $i
t&1 E et % (i Var (Et&1 et )

Next define the “residual”:

(5)  ,gi
t ' r i

t & r f
t & $i

t&1 (r m
t & r f

t )

It follows from equation (1) that:

(6) .Et&1g
i
t ' Et&1 (gi

t r m
t ) ' 0

Further, obviously,  .  Taking unconditional expectations then yields:Et&1 (gi
t Et&1 r m

t ) ' 0

(7) .E gi
t ' E (gi

t r m
t ) ' E (gi

t Et&1 r m
t ) ' 0

Next use the factorization of beta in equation (3) and combine with equation (5) to produce:

(8) r i
t ' r f

t % E ($i
t&1 ) (r m

t & r f
t ) %

 .(i (Et&1 et & E et ) (r m
t & r f

t ) % 0i
t&1 (r m

t & r f
t ) % gi

t

Employ equation (8) to find the covariances between the return on asset i and the market return as well as between the

return on asset i and the conditional market return:

(9) .Cov (r i
t , r m

t ) ' E ($i
t&1 ) Var (r m

t ) % (i Cov [et (Et&1 et & E et ) , r m
t ]

Note that the eta and epsilon terms vanish.  The proof (under mild conditions) that the eta term vanishes is rather tedious

and is omitted here.  See Appendix A in Jagannathan and Wang (1996) for the formal proof.  Similarly,

(10) Cov (r i
t , Et&1 r m

t ) ' E ($i
t&1 ) Cov (r m

t , Et&1 r m
t ) %

.(i Cov [et (Et&1 et & E et ) , Et&1 r m
t ]

It is now easy to rewrite equation (4) as a two-beta equation.  First define the betas:

(11) $i ' Cov (r i
t , r m

t ) / Var (r m
t )

.*i ' Cov (r i
t , Et&1 r m

t ) / Var (Et&1 r m
t )
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Here *i is the “premium” beta.  Use the beta definitions on the left-hand sides of equations (9) and (10):

(12)       ,$i ' E ($i
t&1 )

Var (r m
t )

Var (r m
t )

% (i
Cov [et (Et&1 et & E et ) , r m

t ]

Var (r m
t )

(13)     .*i ' E ($i
t&1 )

Cov (r m
t , Et&1 r m

t )

Var (Et&1 r m
t )

% (i
Cov [et (Et&1 et & E et ) , Et&1 r m

t ]

Var (Et&1 r m
t )

Thus,  can be expressed as a linear function of $i and *i and the result can then be substituted intoE ($i
t&1 ) and (i

equation (4) to yield a two beta formulation.

(b)  Empirical Results

In testing their model Jagannathan and Wang assume somewhat doubtfully that the premium beta can be

approximated by the beta between the asset return and the yield spread between low-grade corporate bonds and high

grade corporate bonds.  Supposedly, the conditional market return moves together with the yield spread pretty closely.

The reason provided by Jagannathan and Wang is that the business cycle is best forecast by the yield premium (for which

there is some decent support) and that the market risk premium moves closely with the business cycle.

Thus, in effect,  Jagannathan and Wang introduce a yield premium beta which has been shown to work in

previous studies in explaining the cross-section of U.S. stock returns.  Not surprisingly the results are quite strong.  They

sort CRSP stocks by size and market beta into 100 portfolios following Fama and French (1992) using monthly data from

1963.  They obtain an R2 of 0.30 with the market beta insignificant while the premium beta is highly significant.  When

Jagannathan and Wang also add a beta for human capital to better proxy for the market they obtain an R2 of 0.55.  When

the size beta and the book-to-market beta are added (together with the market beta forming the Fama-French three-factor

model), the results change little.  The interpretation is that the CAPM is saved!


