Chapter VII. General Issuesin Valuation and Arbitrage

Inthischapter weconsider general rel ationshipsthat exist between discounting cash flows, beta-pricingmodels
and mean-variance efficiency. These relationships are found to exist more generally than in the context of the CAPM
only. Much of the discussion in this chapter is my distillation of the material in Cochrane (1999).

1. STOCHASTIC DISCOUNT FACTORS

(a) Complete Markets and the Discount Factor

om eguation (1.10) in Chapter V we know that we can write for the value of any asset in a complete
Fmarkets economy:

) p. - E[m(S)x(s)] , where m(s) - — = >0.

1+r8(s)
Here X, (s) represents the asset’s payoff in state s. The factor m(s) in each state s is the inverse of one plus the
expected return of the Arrow-Debreu security for state s and is thus positive in each state. 1t is also unique since only
Arrow-Debreu prices are determined uniquely. We can think of the expected return for the Arrow-Debreu security in
state sasthe discount rate for apayoff to bereceived in states. Accordingly itisnatural tothink of m(s) asadiscount
factor that varies stochastically depending on the state. Aside from the term stochastic discount factor, m(s),
depending on context, isalso called the pricing kernel (or sometimes equivalent Martingal e measur e, Radon-Nikodyme
derivative, marginal rate of intertemporal substitution, or benchmark pricing variable). Itssignificanceisthat thisone
stochastic discount factor prices every asset in the economy. Any asset can be priced by discounting payoffs by the
same stochastic discount factor.
Note that we can write equivalently that

() 1=E[m(s)R(s)],
where R (s) represents the gross return on asset i in state s.
(b) Examples of Sochastic Discount Factors in Incomplete Market Economies

Markets need not be completein the context of the CAPM. Under the assumption of normal returnswe found
in Chapter 111 (equation 3.12) that the first-order conditions for investor k imply that

3  EuW)(R-R) =0 - m = a-+bul(w,).
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Theimplication follows by defining m consistent with equation (2) and since the first part of equation (3) holdsfor all
i. Thus, the stochastic discount factor isrelated to the marginal utility of wealth and in thisincomplete markets context
may differ by individual but still prices each asset for that individual .

When we get into dynamic asset pricing theoriesin the next chapter, wewill derivethefollowing standard first-
order condition:

@ BEA[u(c)ulcDI(R-R) =0 - m = Bu/(c)ul(ck)l.

The stochastic discount factor for individual k here equals the marginal rate of intertemporal substitution.

At least in the two cases describe above, it is possible to find stochastic discount factors that prices all assets
for aparticular individual. To what extent these factors may differ across individuals, whether they most be positive
(asisclearly the case in equation 4), whether they are unique for an individual, whether they can be mimicked by a
portfolio of marketable assets, and whether a discount factor must exist in al incomplete-market models is not
immediately clear and will be considered next.

2. INCOMPLETE MARKETSAND STOCHASTIC DISCOUNT FACTORS

e will prove some quite general results that apply for stochastic discount factors in an incomplete
Wmarkets context.

(a) Value Additivity

Consider the set of primary assets with imperfectly correlated returns arranged in the column vector x such
that X T = [X,%,,..X ] withassetprices p ™ = [p,,P,, ... p,]. All primary assetsare availableto all investors. If
we definethe payoff space X asthe set of payoffsavailableto al assets, thenwehave x, € X for al i € {1,...,n}.

Assume now that markets are frictionlessin the sense that portfolio combinations of the n primary assets are
feasible for al individuals at no cost. Or:

Assumption 1 (FrictionlessPortfolio Formation). For all i and j € {1, ..., n} andforall real numbersaand
b, X, = ax; + bx, € X.

Thus the payoff space consists of all linear combinations of the primary payoffs.

Further assume that Value Additivity holds. Thisimplies that the price of alinear combination of payoffsis
equal to the linear combination of the prices of the payoffs. Cochrane (1999) calls this assumption the “law of one
price” (LOOP) astwo aternatives that are essentially equivalent are assumed to have the same price. Cochrane calls
this the “happy meal” assumption: the price of a happy meal should just be equal to the price of aburger, fries, and a
shake. Moreinthe realm of financial assets, the price of, say, agovernment bond should be equal to the price of its
stripped zero-coupon bond and the prices of the stripped coupons added together. Formally:
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Assumption 2 (Value Addditivity). For al real numbers aand b, andforal x, and j € X,
X, = ax + bxj - p(x) = ap(x) + bp(xj).

The following general result then appliesin an environment where markets need not be compl ete:

RESULT 1 (VALUE ADDITIVITY AND THE STOCHASTIC DISCOUNT FACTOR). Provided that Assumption 1
holds:

Assumption2 < For al x, e X: E(m”"x) = p,, where m" € X and unique within X.

Proof. First, E(m*x;) = p, - ValueAdditivity. Say, x, = ax, + bxj . Thenitiseasy to verify the following

P, = E(M"x) = E[m" (ax +bxj) = aE(m"x) + bE(m"x,) = ap, + bpj.Second, itis easy to derive that
Value Additivity -~ E(m”x) = p; . In vector notation we can write E(m”x) = p and we need to show that a
stochastic discount factor exists such that this system of equationsholds. Assumption 1 in vector notation impliesthat
X ={c'x} where c represents any n-vector of real numbers. Assumethat m* = b "x sothat itisamember of X. Set
b = (xxT)!p. Substitutinginto E(m* x ") = p T showsthat the equation holds as needed to be shown. Note that
the matrix x x Tisamatrix of second moments and is positive definite. Hence its inverse exists. Asaresult m* as
proposed exists and is determined uniquely. [

Frictionlessportfolioformation thusimpliesthat assuming val ue additivity i sequival ent to assuming that within
the set of attainable payoffs one, and only one, stochastic discount factor exists. In other words, not only does a
stochastic discount factor exist, it al'so can be constructed as a portfolio from the set of available payoffs and thereis
only one such portfolio in the payoff space. Complete markets are not necessary for this result.

(b) Arbitrage

The above result can be amended dightly if instead of assuming value additivity we assume absence of
arbitrage opportunties (AOAQ) While the no-arbitrage assumption in a sense is similar to the “law of one price’
assumption, it is alittle stronger. The law of one price only assumes that two basically equivalent assets should have
identical prices. Absenceof arbitrageimpliesthat, if oneasset first-order stochasti cally dominatesanother thanit should
have a higher price. Or, put differently, if one asset in no state has alower payoff than a particular other asset but in
some states has a higher payoff, then it should have a higher price. Stated formally:

Assumption 3 (Absence of Arbitrage Opportunities). For every payoff xin X, if
X(s) $ 0 foral sand x(s) > 0 for somes, then p(x) > 0.

A variant of the previous result then becomes:
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RESULT 2(ABSENCE OF ARBITRAGE AND THE STOCHASTIC DISCOUNT FACTOR). Provided that Assumption
1 holds:

Assumption3 < For al x, € X: E(m*x) = p,, with m* € X anduniquewithin X, andm’ >
0.

Thedlightly stronger assumption of no arbitrage thusimpliesthe more specific result that the stochastic discount factor
must also be positive in al possible states. A complete proof of thisresult can be found in Cochrane (1999). Herewe
prove the reverse implication in genera but the implication only for complete markets.

Proof. First, Em*x) = p,, and m* > 0 -~ Absence of Arhitrage Opportunities. Clearly, if m’" isstrictly positive
in all contingencies and X is never negative and strictly positive in some contingenciesthen p, = E(m*x) > 0.
Second, Absence of Arbitrage Opportunities

-~ E(m"x) = p;, and unique m" > 0. Although true for incomplete markets as well we prove this here only for
complete markets. Note that equation (1) proves this somewhat informally already. Alternatively, consider that
Assumption 3 implies Assumption 2. Hence we know that a unique m™ exists that may be negative. But say that for
some state s,

m' (s) < 0. Then consider the Arrow-Debreu security for state s: its p, = E(m”x,) < 0, which contradicts the
assumption of no arbitrage opportunities. [

It should be pointed out that the above result is quite general. It is possible of course to find a stochastic
discount factor that is positive and uniquely determined in payoff space in the context of, say, the CAPM. But this
would require an assumption of normality or quadratic preferences, together with other specific assumptions. Here, on
the other hand, asufficient assumption (other than frictionless portfolio formation) i sabsence of arbitrage opportunities.
Withinthe context of frictionlessmarkets, absence of arbitrageisimplied by thevery weak preferencerestriction of non-
satiation: utility is strictly increasing in wealth (or consumption).

(c) Multiple Sochastic Discount Factors.

In acomplete markets economy, misunique. Thereasonisthat we know from Result 2 that only one mexists
within the payoff space. But with complete markets, the payoff spaceincludesall possibilitiesso no mcan exist outside
of the payoff space.

When markets are incomplete, it is easy to construct additional stochastic discount factors. Consider for
instance m = m" +¢e. Then E(mx) = E[(m” +¢e)x] = p, + E(eX). In an incomplete markets economy, it is
always possible to select infinitely many random outcome variables with mean zero that are independent of all feasible
payoffsin the incomplete markets payoff space, so that E(ex;) = 0. Many of these m's could be positive.

Here and in some of the further sectionsit is useful to use theidea of aprojection. A projection providesthe
least squares forecast of a particular variable. Thus, proj(y|1,x) = & + bx , where & and b are the least squares
estimates of aregression of y on x.
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Consider the projection of m on the space of payoffs X. Then we can write that
m = proj(m|X) + e, E(ex) =0 for ali. Thus,

(5 p = E(mx) = E{[proj(mIX) + e]x} = E[proj(mIX)x] = E(m"x).

The last equality follows since the projection of m on the payoff space will lie within the payoff space and must thus
be the unique discount factor that lies in the payoff space under assumptions 1 and 2 or assumptions 1 and 3.

If the stochastic discount rate generated by some particular asset pricing model with incomplete marketswere
m, then it may not be found as a portfolio from the available asset opportunities. However, equation (5) shows that it
is always possible to construct a mimicking portfolio m" of mwhich has the exact same pricing implications as m.

Interestingly, if one knew the true model and exact theoretical variable to represent m from the theoretical
model, but if this variable were measured with some error, then sufficient data mining might produce the mimicking
portfolio that, asisthe case with portfolio returns, would likely be measured with less error and so might perform better
than the true model!

(d) Systematic and Idiosyncratic Risk

Given a stochastic discount factor and using projections, it is possible to provide a natural definition of
systematic and idiosyncratic risk. Set x; = X" + g, where X' = proj (x,|m). Then:

p(e) = E(mg) =0, p(x) = E(mx) = E(mx’) = p(x’).
Thus, the systematic risk is the risk that is perfectly correlated with the stochastic discount factor. It is found by

projecting the return of asset i on m (without a constant so that €; need not have zero mean). Theidiosyncratic risk is
uncorrelated with m and is not priced as was shown.

3. STOCHASTIC DISCOUNT FACTORSAND BETA PRICING MODELS

ewill explore herethe connection between astochastic discount factor representation, abeta-pricing
representation, and amean-variance efficiency representation and find that all three representations
are equivalent.

(a) Stochastic Discount Factors and Beta-Pricing Models

Weknow from equation (5) that one can alwaysfind amimicking portfolio for the“true” underlying stochastic
discount factor that prices assets equally well.

6 P - E(MX) - p - E(m'x) ~ 1-E(m'R),
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where m* = proj (m]|X). Fromequation (6) we can derivetwo useful results. First, if arisk free asset exists, itsreturn
would equal:

@) 1=EMR)=EM)R - R =1/EmM’).

Second, we know that by construction m’ is the payoff on a portfolio of generally available assets. Now consider the
return on the payoff m : R_. =m*/p_ . From equation (6) for asset m" we then have:

(8) P, = E(M’)? - R..=m"/E(m")?.

Returning to equation (6), use the definition of covariance to write:

[1-Cov(m™, R)I
E(m™)

9) E(R) =

1

= +

E(m")

Cov(im™,R) ]
Var (m™)

) Var(m*)]
Em’) |

Clearly, we already have abeta pricing formulation at this point. However, to obtain amore standard formulation, use
equation (8) to relate the return on any asset to the return on the stochastic discount factor mimicking portfolio. Apply
equation (9) to the stochastic discount factor mimicking portfolio and use equation (8) to obtain:

1 VaR,)
m)  ERy)

10)  E(R,) =
(10) (R»n)E

Rewrite equation (9) to transform to returns on the mimicking portfolio and then combine equations (9) and (10) to
produce:

1
11 E(R) = -
) ER) -

Cov(R,-,R) 1
-E 1.
Var (R, ) J [ E(m") (R ))

If arisk free asset exists then from equation (7) we can write:
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C R
(12 E(R) =R + B [E(R,-R) , whee B, . = %ij)_

Or, converting gross returnsinto returns:

(13 My =TI + Bim*(llm* - rf) .

Note that the stepsthat |ead to equation (13) can also bereversed. So the existence of asingle betapricing formulation,
with betarelated to the covariance between asset return and the mimicking portfolio return, implies the existence of an
m’ that prices all assets.

In summary:

RESULT 3 (STOCHASTIC DISCOUNT FACTORS AND BETA REPRESENTATIONS). Iff. a stochastic discount
factor formulation applies, a one-beta model exists with as its factor the return on the stochastic discount
factor mimicking portfolio:

p, = E(mx) < W =1 + By, (ry - W) ,with B, . = Cov(r.,r,)/Var(r,.).

Thus, assumptions 1 and 2 (or 3) are seen to produce a CAPM-type model in which the covariance with one
particular portfolio return is sufficient to price each asset. The key portfolio here is the portfolio that mimics the
stochastic discount factor m. This portfolio, of course, in general is more difficult to obtain than the market portfolio
usedinthe CAPM.. Additionally, the portfolio hasanegativerisk premium asfollowsfrom equation (10). Thismakes
sense since high returns when the future is discounted less are more valuable.

(b) Beta Pricing Models and Stochastic Discount Factors
What if there are more betas or when the betais not the beta with the mimicking portfolio? We will see next
that alinear factor model (such asthe APT) is equivalent to a stochastic discount factor that is linear in the factors.
Define f as a demeaned column vector of the k factors and b as a column vector of k constants. (Note that
demeaning the factors is without loss of generality as the factor means appropriately weighted can be added to the

constant). Additionally, define B, as the column vector of sensitivities of asset i to the k factors and A as the column
vector of risk premia on the k factors. Then:

RESULT 4 (LINEAR STOCHASTIC DISCOUNT FACTORS AND GENERAL BETA REPRESENTATIONS). The
following two representations are equivalent:

(A E(MR) =1, m=a+b'f

(B) ER) =a+A"B,
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whereo = 1/a, and A = -aE(mf).

Proof. From (A), and similar to equation (9), we get that:

~[1-Cov(m,R)l 1
(14 E(Ri) = T = E

E(RfT)b
T a

The second equality followsfrom using (A) and sincethemeansof f areequal to zero. To put the 3; into equation (14),
recall that

(15) B, = E(ffT) 'E(fR).

Substitute equation (15) into equation (14) to obtain

T E(ff )b

(16) E(Ri):i—ﬁ i

It is now easy to check with the appropriate substitutions that we obtain representation (B). Vice versa, it is
straightforward to go from equation (16) back to equation (14) and then to representation (A). [

Note that the representations are not unique. For instance, we have seen that given incomplete markets, you
can add arandom variable orthogonal to returnsto m, leaving pricing implications unchanged. And, in representation
(B), adding risk factorswith zero  or with zero A would leave pricing implications unchanged as well. Note also that,
from apractical perspective, Result 4 tellsyou how to discount cash flowsif the APT isassumed to hold. Further, note
that from Result 4 we can write A, /R, = p(f,). |.e., the present value of the risk premium on factor k is equal to the
price of the factor. Lastly, note that we know from Result 3 for instance that we could combine the different factors
into just one factor, m.

(c) Sochastic Discount Factors and Mean-Variance Efficiency
Wewill assumeherefor simplicity that arisk free asset exists. Theresultsin thissection hold also for themore
genera case as shown in Cochrane (1999). We start again with the assumption that a stochastic discount factor

representation holds for all assets. We can then write, using equations (6) and (7), and using the linearity property of
the covariance operator:
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(17) E(MR) =1 <= E(R) =R - COVE[E(mn:’?)/;O;*)iR] ,

if arisk free asset exists. Using the definition of the correlation coefficient of the returns on asset i and the mimicking
portfolio:

o(R,-)

(18) E(MR) =1 = E(R) =R - p,, 04 TR

By employing thefactthat -1 < p;, < 1 itispossibleto construct amean-variance frontier:

O(Rm*)
E(R,) ]

(199 E(MR) =1 < |[E(R)-R| < oRi[

Figure (1) shows the wedge-shaped mean-variance frontier. Clearly the risk free asset ison the frontier. Thisisalso
true for the mimicking portfolio which follows from the fact that p . = 1. Equation (18) shows that indeed the
mimicking portfolio ison the mean-variancefrontier. 1tishowever ontheinefficient part of thefrontier. Thisprovides
the explanation for why the risk premium in equation (17), for instance, is negative. Note that the term in large
parentheses equals the “maximal Sharpe Ratio.”

Combinations of the risk free asset and the mimicking portfolio trace out the mean-variance frontier. Thisis
clear from the fact that linear combinations of these two assets are either perfectly positively correlated or perfectly
negatively correlated. Thus for all portfoliosi that are linear combinations of the risk free asset and the mimicking
portfolio, |p,,,| = 1. Asaresult,itispossibletowriteeitherm or R . = m*/E[(m~)?] aslinearly related to any mean-
variance efficient return, R, . So any frontier return is sufficient for pricing. Thus,

RESULT 5 (STOCHASTIC DISCOUNT FACTORSAND THE MEAN VARIANCE FRONTIER). The existence of a
stochastic discount factor representationisequivalentto (1) Ry, = a + bm”™ and to the beta formulation
of beta with any mean-variant efficient return  (2) E(R) = R + B, e [E(Rye) — R

Our proof here assumed existence of arisk free asset, but, as stated previously, theresult holdsalso if no such
asset exists. Of course we already knew the result. Roll (1976) proved that a single beta representation exists if and
only if the benchmark return is on the mean-variance frontier. Thus, Result 5 follows from Roll’ sresult plus Result 3
(which relates the stochastic discount factor representation to a single beta pricing model.

Note that the expression in equation (19) is akey element in the “Hansen-Jagannathan Bound” which relates
excess returnsto volatility in fundamentals. Alsonotethatin Figure 1itiseasy toindicatetheidiosyncratic risk of any
asset. Asdiscussed in section 2, theidiosyncratic risk isthe part not correlated with m or m". Henceit is causing the
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E(R)

Figure1

Stochastic Discount Factor and Portfolio Frontier
The return on any mean-variance efficient portfolio
must be perfectly correlated with m*.

variance in excess of the variance of the efficient asset with equal mean:

(20) X =X+, where X" = proj(x|m) - of = o’ + o

Lastly, Figure 1 showsthat R . can be found as the minimum feasible second moment asset as shown in Cochrane
(2001).
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