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Chapter I.  Preliminaries

1.  INTRODUCTION

K
nowing the factors that determine the prices of financial and non-financial assets is important in making

decisions at the firm level; it is also crucial in understanding financial market signals as they apply to

business activity, financial stability, and fluctuations in aggregate wealth and the distribution of wealth.

When we consider “asset” pricing we often have in mind stock prices.  However, asset pricing in general also applies

to other financial assets, for instance, bonds and derivatives, to non-financial assets such as gold, real estate, and oil, and

to collectibles like art, coins, baseball cards, etc.  We will mostly think of the assets as being stocks, but we will also see

that many of the pricing principles that apply to stocks apply to other assets as well.  

We may think of any asset as generating (usually) risky, future payoffs distributed over time.  The value of the

asset can be viewed as the present value of the payoffs or cash flows, properly discounted for risk and time lags.  At a

partial equilibrium level of analysis, both the risk-adjustment method and its quantitative value, as well as the time-lag

adjustment method and value are taken as given.  For our purposes we will be interested mostly in general equilibrium

models in which the proper risk and time adjustments are obtained endogenously.

Obtaining values for asset prices is quite similar to obtaining asset returns.  In particular, for a given stream of

direct payoffs and derived asset prices, the current one-period asset return can found as the sum of current price plus

current payoff divided by previous-period price.  Conversely, for given asset returns and given stream of direct payoffs,

the asset prices can be backed out.  In most cases it will be more convenient for us to focus on asset returns than asset

prices.

Two prominent asset pricing theories, the Arbitrage Pricing Theory and Merton’s Intertemporal Capital Asset

Pricing Model, provide a very general solution for the factors that affect expected asset returns.  It is a common

misperception to view more general models as superior to less general models.  The problem with the aforementioned

APT and ICAPM is that they are so general that they have virtually no empirical content.  I would characterize this

shortcoming as the key problem in the asset pricing field.  In these notes we will not fail to cover the general asset pricing

models, but we will emphasize other asset pricing models that are less general but are based on specific general

equilibrium models, with specific, economically interesting, factors determining the asset returns.

Aside from the “general” asset pricing models and the “specific” asset pricing models discussed above, a third

type of asset pricing model may be distinguished:  the “pricing by arbitrage” type.  This type of model prices assets by

comparison.  One creates a “portfolio” that mimics the payoffs of a particular primary asset.  The mimicking portfolio

is then priced by arbitrage.  The portfolio may be constructed such that one may infer the price of a derivative asset (an

option, for instance).  This derivative asset is priced only in comparison to the primary asset.  We will pay little attention

to this type of asset pricing in the first financial economics course.  It will be covered extensively in our third financial

economics course.

In the remainder of the chapter we will discuss issues related to adjustment of cash flows to account for time

preference in section 2 and issues related to adjustment of cash flows to account for risk in section 3.
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1  A typical misconception is that time variation in the discount rate implies time-inconsistent behavior.  This is not the
case as long as the form of the discount function in equation (1) does not change over time.  That is, if the discount factor only
depends on the stream of consumption and not explicitly on time [see Strotz (1956)].  For more, relatively non-technical,
information about discounting see Price (1993).
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2.  THE TIME VALUE OF MONEY

(a)  The Subjective Rate of Time Preference

I
n a standard consumer choice model, one may think of life-time utility U as being determined by

consumption levels ci in the different T periods that the consumer has left to live U = U(c1, c2,...., cT ).  Time

preference (alternatively impatience, or discounting the future) is said to exist if future consumption, in a

sense to be made precise in the following, is less valuable to the individual than is current consumption.  Traditionally,

explicit dynamic models have assumed time separable preferences, which imply a constant rate of time preference.

However, other dynamic preference specifications, in which the rate of time preference changes over time are becoming

increasingly popular.  It is therefore important to consider a general definition for time preference that allows variation

over time.  Define the discount rate (or rate of time preference or degree of impatience) at time t as Dt. Then we can

define the (one-period ahead)  discount factor  as .  Thus, if the discount rate at time t is positive ,$t ' 1/(1%Dt ) Dt > 0

then the discount factor is less than one, ;  if the discount rate increases (falls), the discount factor falls (increases).$t < 1

The one-period discount factor at time t is defined exactly in a discrete-time formulation as:

(1) $t (c1 , ... , ct&1 , c , c , ... , cT ) / &
dct

dct%1

*dU ' 0, ct ' ct%1 ' c

=   .
MU (c1 , ... , ct&1 , c , c , ... , cT ) /Mct%1

MU (c1 , ... , ct&1 , c , c , ... , cT ) /Mct

The second equality follows since . The discount factor, in words, is thusdU ' 0 ' (MU /Mct ) dct % (MU /Mct%1 ) dct%1

given as the Marginal Rate of Intertemporal Substitution between two points in time at the location where consumption

at the two points in time is equal.  In intuitive terms, it indicates, given initially that , how much of  thect ' ct%1 ct

individual is willing to sacrifice for one extra unit of .  Note that, in general, the discount factor may depend onct%1

consumption levels at all points in time.1

For a time-separable intertemporal utility specification, utility can be written as:

(2) .U (c1 , ... , cT ) ' 'T
t'1

$t&1 u (ct )

The discount factor, then, can be obtained from the definition in equation (1) as:
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Figure 1
Time Preference

Utility is time-separable, as indicated by
equal slopes along the 45° line.
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(3) .$t (c1 , ... , ct&1 , c , c , ... , cT ) ' $

Thus, discount rate and factor are constant for the time-separable utility formulation.

Figure 1 shows that the discount factor can be obtained as the absolute value of the slope of the indifference

curve along the 45o degree line emanating from the origin.  The slope should be smaller than one for positivedct /dct%1

time preference to exist.  Time separability implies that the slope  does not depend on the level of consumptiondct /dct%1

at times other than t or t+1.  For the commonly used time separable form in equation (2), the slope of alongdct /dct%1

the 45o degree line also does not depend on the level of , which implies that the slope is the same for eachct ' ct%1

indifference curve, as shown in Figure 1.

For positive time preference, it makes sense to discount future cash flows more than current cash flows.  A

natural discount factor for an individual valuing the payoffs of a particular asset  would appear to be the subjective rate

of time preference.  However, we will see in the following that (1) individual preferences should have no impact on the

discount rate used in valuing an asset; and (2) even if preferences of all individuals are time-separable and identical, the

proper discount rate in asset valuation is not generally equal to $.

(b) The Objective Rate of Time Preference.  

For simplicity consider here only the two-period world originally studied by the Classical economist Irving

Fisher.  For a perfectly competitive world, Figure 2 displays the standard general equilibrium allocation, but for the

composite consumption good at two points in time (c1 and c2) rather than two different consumption goods at one point

in time.
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2 One may verify that the Fisher analysis determines the market interest rate by setting savings (postponing
consumption to the next period) equal to physical investment (reserving inputs for production in the next period).
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p2/p1=1/(1+r)

Figure 2
Objective Discount Factor and Fisher Separation

 The objective rate of time preference will be the same for any
two consumers.  The objective and subjective rates of time

preference will differ for the representative consumer.
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At point A we have the standard condition for a Pareto Optimal allocation sustained 

in competitive equilibrium by an equilibrium price ratio:

(4) ,MRIT (c1 , c2 ) ' p2 /p1 ' MRIS (c1 , c2 )

the Marginal Rate of Intertemporal Transformation is equal to the Marginal Rate of Intertemporal Substitution and this

equality is obtained in general equilibrium through the equilibrium price ratio .  This equilibrium price ratiop2 /p1

represents the objective (or market) discount factor, generating the objective rate of time preference.  The analysis here

presumes of course that an aggregate production possibilities frontier and an aggregate preference ordering exist, or,

similarly, that a representative firm and representative consumer exist.  Note that we can interpret 

(5) , p2 /p1 ' 1/(1%r)

where r is the real interest rate: saving one unit of consumption currently can buy you one more unit in the next period.2

If we assume existence of a representative firm and consumer, then the two equalities in (4) can be derived from  standard

optimization problems:

:  for given inputs  maximize profit, subject to
Max
y1 , y2

y / p1 y1 % p2 y2 , subject to T (y1 , y2 , T̄ ) ' 0 T̄

the transformation technology, yielding, in market equilibrium ( ), the first expression in (4), and:y1 ' c1 , y2 ' c2
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:   maximize the, possibly non-time-separable, utility
Max
c1 , c2

U (c1 , c2 ) , subject to p1 y1 % p2 y2 ' y

subject to a budget constraint, which yields the second equality in (4).

Consider the preferences of an individual consumer, taking market prices as given.  In Figure 2, view the

allocation A as that for a representative consumer a.  For a consumer b that differs from the representative consumer a

but has an identical wealth endowment, the optimal allocation may be found at point B.  Note that ;MRISA ' MRISB

this fact illustrates our first result of interest, namely that individual preferences are irrelevant for the discount factor that

should guide the individual’s decisions, including the decision how to value a particular asset.  This is known as the

Fisher Separation result.  It also applies in a corporate finance situation where the way to maximize the value of the firm

to shareholders should be independent of individual preferences but instead should be based on market prices, such as

the market discount rate.  The argument is that any feasible trade for the individual must lie along the intertemporal

budget line.  Any allocation along the budget line that differs from point B, of course will change the realized marginal

rate of intertemporal substitution but will also move the individual to a lower indifference curve.

A second result may be seen by considering point C in Figure 2 which is the intersection between the market

discount rate line (and the budget line for the representative consumer) and the 45o line.  It indicates also the subjective

discount factor of the representative consumer, given as the slope of the indifference curve at point C.  If the preferences

are intertemporally separable then this slope is equal to the constant $.  This is clearly different from the slope of the

budget line.  

Thus, even for the representative consumer, the objective and subjective rates of time preference will differ.

When preferences are intertemporally separable both are different constants. The objective discount factor is given by

 which equals  and differs generally from $ which equals by definitionMRIS (c1 , c2 ) ' $u )(c2 ) /u )(c1 ) 1 / (1 % r )

, since the MRIT may easily imply an allocation where c1 and c2 are not equal.  Hence, the representative1/(1 % D )

consumer will discount cash flows differently (namely by the constant objective discount factor) from the way she will

discount utility (which, for intertemporally separable preferences, is discounted by the constant subjective discount

factor).  In simple (but imprecise) terms one may say that wealth is discounted differently than consumption.

(c) Present Value and Value Additivity

As we have seen, in the certainty context of the Fisher model we can use the real interest rate to discount future

consumption streams.  Take now a real cash flow to be received (with certainty) at a time s periods in the future.  What

is its present value?  We can obtain the correct answer in two different ways.  First, using the idea of opportunity cost.

By postponing the cash flow by s periods you forego interest.  The Future Value at time s of an initial investment X0 is

given as , where we account for periodic compounding and we assume a constant real interest rate.  IfFVs ' (1%r)s X0

we turn this around and set the Future Value at time s equal to a certain cash flow CFs , fixed in advance, then we can

find the Present Value at time 0, PV0 , as

(6)  .PV0 '
CFs

(1 % r )s
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Note that, in a perfect market environment, the opportunity you sacrifice–your next best alternative used for calculating

the opportunity cost– must be economically identical to the project you evaluate.  Given that the return on this next best

alternative is equal to r , we can view the present value calculation as simply representing arbitrage:  the cash flow of

the project should be valued such that both this project and the alternative generate the same return.  

As a second, related, approach to calculating present value, one could extend the logic of the Fisher analysis

to a multi-period context.  Assuming that the objective discount factor remains constant we then would have the objective

discount factor as .  This is the appropriate factor to discount cashps /p0 ' (ps /ps&1 )(ps&1 /ps&2 ) ...(p1 /p0 ) ' [1 / (1%r)]s

flows, yielding again equation (6).

In the perfectly competitive Fisher world it also follows that each component of a stream of cash flows could

be bought or sold separately.  Thus, the present value of a stream of cash flows is just the sum of the present values of

the separate cash flows.  This property is called Value Additivity.  Accordingly, we can write the present value of a stream

of future payments as:

(7)  .PV0 ' j
4

s'1

CFs

(1 % r )s

In practice, Treasury Bonds are broken up into their separate components: coupon payments  and the zero-coupon

remainder ( the latter called a “strip”).  As dealers find it worth their while to incur the transaction costs to do this, it

appears that Value Additivity holds only approximately in actuality.

(d) The Gordon Growth Model

The cash flows in equation (7) could follow any pattern.  Usually they will be zero beyond some point T.  In

many cases cash flows can only be approximated and one has but vague ideas of its pattern over time.  These vague ideas

are often best summarized by an initial value, that is quite precisely known, and an average growth rate, maybe less

precisely known.

The “Gordon Growth Model” makes the practical assumptions of a known initial cash flow  X1 and a known

constant growth rate g.  It is a useful model not only because it provides a reasonable approximation to the entire future

of cash flows, it also generates a simple expression for the Present Value.  With these assumptions, equation (7) becomes:

(8)  .PV0 ' j
4

s'1

(1 % g )s&1 X1

(1 % r )s
'

X1

r & g

That the second equality holds is easy to see by realizing that we have an infinite geometric series with a constant

geometric factor of decline of .  Clearly, if cash flows grow at a higher or equal rate compared to the real(1%g) / (1%r)

rate of interest, g$ r, the present value is infinite as the individual present value components do not decline over time.

Equation (8) can be quite useful in a variety of cases.  One application is obtained if we apply the Gordon

Growth Model to the overall stock market.  Strictly taken the model only applies for a fairly certain growth rate.
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However, as we will find later in this chapter, one may just discount expected cash flows for risk by discounting by the

appropriate expected real stock return (the proper opportunity cost for the riskiness of this particular project) rather than

the real interest rate.

The only cash flows generated by stocks in the aggregate are the dividend payments since we can ignore the

pure distribution effects rendered by capital gains or losses from stock trading.  Thus, the value of a stock should be the

present value of the stream of dividends generated.  In equation (8) we may thus interpret X1  as a typical annual

aggregate dividend payment and PV0  as the current price of a stock index.  The price-dividend ratio is then equal to

.  If average price-dividend ratios for S&P 500 firms equal around 33.  This implies from equationPV0 /X0 . PV0 /X1

(8) that r - g = 0.03.   Historically, real stock  returns have been around 0.08 (8%).  Hence, stock valuations imply that

g = 0.05, that dividends growth is expected on a permanent basis to equal 5%.  This number substantially exceeds the

around 2% historical growth rate of real per capita GDP and the similar projections for its growth.  Explanations may

be that the growth of profitability on a permanent basis is expected to exceed real growth of GDP; that the risk premium

inherent in stock returns has fallen permanently; that we have a permanently altered economy; or that stocks are simply

overvalued.

(e) Inflation and Valuation

A stylized fact is the observation that stocks are not a perfect hedge for anticipated inflation.  Inflation,

anticipated as well as unanticipated, appears to have a clear negative impact on real stock returns.  Here we will see that,

at first sight, inflation should have no impact on stock prices and returns.

Assume that future dividends in real terms are unaffected by inflation B.  This is a reasonable assumption since

firm profits in real terms should not change–both costs and revenues should change with inflation, causing nominal

profits to rise with inflation and real profits to be unchanged.   Using the information of the present value calculation in

equation (8) for simplicity, it is assumed that real cash flow X1 is not affected by inflation and thus equals (1+ B)X1 in

nominal terms.  Due to inflation, nominal dividends will be growing at a higher rate gn and we now discount the nominal

cash flows by the nominal return i.  Equation (9) then gives the valuation for the Gordon Growth Model when inflation

is introduced:

(9)  .PV0 ' j
4

s'1

(1 % gn )s&1 (1 % B ) X1

(1 % i )s
'

(1 % B ) X1

(1 % i ) & (1 % gn )
'

X1

r & g

The second equality follows by the definitions of real interest rate r:   and real growth rate g:(1 % i ) / (1 % B ) ' 1 % r

.  It follows in the context of our assumptions that (a) current stock prices are not affected by(1 % gn ) / (1 % B ) ' 1 % g

anticipated inflation and that (b) one may alternatively discount nominal payoffs with the nominal interest rate or real

payoffs with the real interest rate.

Empirically, it appears that both anticipated and unanticipated increases in inflation lower stock prices, so that

stocks appear to be poor inflation hedges.  This is clearly counter to our discussion which implies that inflation’s effect

on stock prices should be neutral.  The most prominent explanation for this apparent non-neutrality is by Fama (1981):
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since stocks react quickly to new information, they decrease on news of a business cycle downturn, before this downturn

happens.  But a downturn in activity, given constant money growth, implies higher inflation (in a classical macro model).

Thus, higher inflation is associated with (but does not cause!)  lower stock prices; which is what we find empirically.

(f) Compounding

Consider the calculation of two different types of “portfolio” returns:  (1) n different assets held for one period;

(2) one asset held over n periods.  

In the first case, no compounding occurs since the return on asset i cannot be reinvested in asset j during the

one period.  Thus the portfolio return should be calculated as the arithmetic average:

(10)  ,rt (n assets) ' 'n
i'1

si t ri t

where the sit indicate the fraction of total wealth invested in asset i during period t .  Thus the portfolio return is found

as a weighted arithmetic average.

In the second case, the return on the asset for a period is assumed to be fully reinvested in the same asset in the

subsequent period.  If no reinvestment takes place (and the returns are kept under the mattress) then it is appropriate to

calculate the per-period return as an arithmetic average.  But, in the more typical case of reinvestment in the same asset,

compounding should be taken into consideration:

(11) .1 % ri (n periods) ' A
n

t'1
(1 % ri t )

1/n

Here the per-period return on asset i is found as the geometric average of the returns in each of the n periods.  The

rationale for this definition is, of course, that receiving this geometric average n periods in a row yields exactly the same

final wealth as receiving the actual returns in each period.

If the returns are fairly small then the two approaches yield very similar results.  Intuitively, this makes sense

since compounding is a second-order effect (interest upon interest) which becomes negligible if the first-order effects

are small.  Mathematically, we often make logarithmic approximations, taking advantage of the fact that log (1 % x) . x

for small x.  Applying this approximation to equation (11), and taking advantage of several of the properties of logs,

yields:

(12)  .ri (n periods) . (1 /n) 'n
t'1

ri t

Equation (12) gives of course an equal-weighted version of the result in equation (10).

The compounding in equation (11) is discrete:  the return is paid only at the end of each period.  In many cases

returns trickle in on a fairly continuous basis.  And banks, for instance, should pay and receive interest on a daily basis

(pretty much continuous compared to the semi-annual coupon payments made by most bonds) since one of their

opportunities is buying or selling federal funds, which provide daily interest.

Consider an interest payment r to be made once at the end of a period.  It will provide a total (gross) return of
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1 + r  at the end of the period.  However, if this payment is paid semi-periodically, i.e., in two equal parts, and the early

payment is reinvested, then the gross payoff at the end of the period becomes [1 + (r/2) ] 2.  More generally, if interest

is paid n times during the period, the gross payoff  becomes [1 + (r/z) ] z.  If the same z-equal- payments scenario holds

in each of n periods, we get [1 + (r/z) ] zn.  

Continuous compounding means that we have to take the limit of z going to infinity.  Employing the definition

of e, this yields the identity:

(13)  .lim
z 6 4 [1 % (r /z )]z n ' e r n

Both sides of equation (13) indicate of course the total return.  If one wants to know the average return per period, it is

necessary to take the n-th root on both sides, yielding e r for the right-hand term.

If we compare the one-period discrete compounding gross return  1 + rd  to the one-period continuous

compounding gross return  e r , it should be clear that in order for both end-of-period gross returns to be equal,  1 + rd

=  e r,  we need rd > r .   Additionally, if we take the log of both sides of the previous equation, we get

(14) .r ' log (1 % rd ) . rd

Taking logs provides an approximation for the discrete-compounding return but an exact expression for the continuous

compounding return.

A further advantage of continuous compounding is that, under some circumstances, it allows one to work in log

terms, which in turn allow linear expressions.  Consider for instance a case where all dividends earned on a portfolio are

automatically reinvested in the same portfolio.  The value at time t of the portfolio , with dividends reinvested, is given

as .  The gross return then is equal to .  Given that the return is continuously compounded, we have:p div
t p div

t%1 /p div
t

(15) ,e
r

c
t%1 ' p div

t%1 /p div
t : r c

t%1 ' ln p div
t%1 & ln p div

t

where the latter inequality follows by taking logs on both sides of the first inequality.  Many data sets express stock prices

or stock-index prices as prices “with dividends reinvested”; for such data (continuously compounded) returns are

calculated most easily by subtracting the log of the previous price observations from the log of the current price

observation.

Lastly, note that a drawback of using continuously compounded returns is that calculating weighted average

portfolio returns is not straightforward.  While for discrete compounding one may use equation (10) above, for

continuous compounding there is no easy expression  akin to equation (10) for cross-sectional portfolio returns.  Using

a simple equal-weighted two asset example:

(16)  ;   but    .e
r

c
t ' (1 /2) e

r
c

1 t % (1 /2) e
r

c
2 t r c

t … (1 /2) r c
1 t % (1 /2) r c

2 t

Thus, continuous compounding may be more convenient in calculating time series returns, while discrete compounding

may be easier in calculating cross-sectional returns.
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As an example, we can apply continuous compounding to the Gordon Growth Model where we now assume

that a fixed payment X is paid continuously through time.  The value of this asset then is given as:

(17)  .m
4

0

e &rn (e gn X ) dn ' X m
4

0

e (g&r )n dn '
X

g & r
[e (g&r )n ] | 40 '

X
r & g

Here we obtain essentially the same result as in the discrete-compounding case except that all constants need to be

interpreted as continuous-compounding-based.

(g)  Remaining Issues in Time Discounting

Even for deterministic cash flows, the previous discussion has not exhausted the issues that may arise in valuing

payments that are delayed.

One issue is liquidity.  There should be a substantial difference in valuing a future cash flow of an asset that is

highly marketable as compared to an asset that could not be sold until the payment is due.  For the latter type of asset

(possibly your own human capital before obtaining your degree, or software in development), the liquidation value is

important.  In case of a personal emergency, when the project has to be abandoned for whatever reason, its liquidation

value would matter.  

As a partial answer to this liquidity issue, consider first the opportunity cost of holding a perfectly marketable

asset.  As the asset is riskless and could be sold for true value on short notice, the proper opportunity cost is the rate of

interest of a short-term riskless bond, such as a T-Bill.  On the other hand, the opportunity cost of holding an asset whose

intermediate value may vary is more like the rate of return on a long-term riskless bond, such as a Government Bond.

Based on the term structure of interest rates literature, the rate on a long-term bond usually exceeds that on a short-term

bond, so that the less liquid asset will be worth less.

A further issue is related to variability of the opportunity cost, the discount rate.  If the variability is known or

predictable, it is not a big issue, the discount factor will just differ by period.  An uncertain opportunity cost, however,

is a different matter, especially if the opportunity cost is correlated with the cash flow.  It seems then that, our simple

time-discounting method requires not only known cash flows but also a known pattern of the opportunity cost in order

to be strictly valid.  The impact of uncertainty on discounting cash flows is introduced next and is further examined in

Chapter V.

(h)  Applications and Exercises

1. Consider the Gordon Growth Model with a finite stream of cash flows.  Specifically, assume that cash flows

grow at a constant rate until time T and are zero after time T.

(a) Derive the Present Value of the stream of payments under discrete compounding.

(b) Derive the Present Value of the stream of payments under continuous  compounding.
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3 This concept of risk considers an increase in payoff variability for a given mean payoff and is often referred to as a
“mean preserving spread.”  A slight generalization is the concept of “second-order stochastic dominance”:  A “less risky” payoff
distribution second-order stochastically dominates a “more risky” payoff distribution if all risk averse individuals prefer it.  This
generalizes the Rothschild-Stiglitz concept of risk since this may occur not only if the second payoff distribution is a mean
preserving spread but also if the mean of the second payoff is not preserved and is lower.
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2. Derive the Gordon Growth Model.  Explain how inflation is taken into consideration in this model.  Assume

that projected inflation is 3%, projected stock returns are 10% and the growth rate of earnings is projected to

be 5%.  Calculate what the price/earnings ratio should be for an average stock according to the Gordon Growth

Model.

3. Prove that the n-period discount factor at time t ,  [defined as in equation (1) but with  for all$n
t ct ' ct % i

] , is equal to the product of one-period discount factors:  .0 # i # n & 1 (n & 1

i ' 0
$t % i

3.  ACCOUNTING FOR RISK

(a)  One-Sided and Two-Sided Risk

T
he standard use of the concept of risk as used by finance academicians relates to a two-sided risk:  it

considers the impact of losses as well as gains, relative to expectation.  This concept of risk was first

formalized precisely by Rothschild and Stiglitz (1970).  For a risky cash flow, they define an increase

in risk as adding independent noise to the cash flow for a given expected value of the cash flow, which, they show, is

equivalent to putting more weight in the tails of the cash flow distribution.  They prove that any risk averse investor (that

is, one who has concave utility over consumption) will dislike such an increase in risk.  (In fact they show that, only for

such a definition of risk, any risk averse investor dislikes more risk)3.  

The Rothschild-Stiglitz definition of risk is an intellectually satisfying one.  However, it is of little practical use

in pricing assets for the following reasons.  First, it provides only a partial ordering of risky prospects.  That is, many

risks cannot be compared in this way since one can not separate out an independent noise by which these risks differ.

Thus, some investors would prefer the one risk, some would prefer the other risk.  Second, even if two risks can be

ranked in the Rothschild-Stiglitz way, this is only an ordinal ranking and it is difficult to put a cardinal number on the

difference for pricing purposes.  Third, this general definition of risk is individual based and ignores the Fisher

Separation result that implies for competitive markets.  Thus, in the following we resort to more operational definitions

of risk.  Conceptually, however, we continue to think of risk in these general terms.

In the business community, the implicit concept of risk is often a one-sided one.  “Putting your money at risk”

means that you may lose it.  It doesn’t really speak to what happens when you gain.  This concept of risk is associated

with default risk (as opposed to the two-sided market risk) and occurs in its purest form in a risky bond or junk bond.

It differs from the academic definition of risk in that it matters even for a risk-neutral individual.  It further is difficult

to work with since introducing one-sided risk implies a change in the mean of the payoff as well as in the variance of the
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payoff.  In the following we always employ the two-sided concept of risk.  We show next how to take one-sided “risk”

into account.

Assume that the market is risk neutral so that two-sided risk is irrelevant (in exercise 1 below we drop the

assumption of a risk neutral market).  Imagine a firm issuing a perpetual bond with constant annual coupon payment X

and a probability of bankruptcy of F.  When the firm goes bankrupt no further coupon payments will be paid.  What is

the value of this perpetual bond?  Given a risk-neutral market, all we need to do is to calculate the expected cash-flow

for each period and discount by the risk free interest rate.  The expected cash flow for, say, period n is easily calculated

as .  Thus, the (present) value V of the perpetual bond equals:E (CFn ) ' (1&F )n&1 X

(1)  .V '
X

1 % r
%

(1&F )X

(1 % r )2
%

(1&F )2 X

(1 % r )3
.... ' X

r % F

Where the second equality holds pretty much along the lines of the Gordon Growth Model (but with F replacing  - g).

Equation (1) is as if the probability of default is added as part of the discount rate:  you discount payments further in the

future by more because of impatience and because you are less likely to receive them.

In summary, one-sided “risk” may be taken into account by simply adjusting the expected value of the cash flow.

Clearly, a higher probability of default lowers expected cash flows by more the further in the future they are expected

to be received.  This affects therefore investors even in a risk neutral market.  We will see that, in a realistic risk averse

market, one-sided “risk” may still be riskless according to certain asset pricing models if it is uncorrelated with market

returns and therefore disappears in a well-diversified portfolio.  Alternatively, if we do not want to adjust the expected

value of the cash flow to account for default risk, equation (1) shows that we may be able to augment the risk free

discount rate with the default probability to account for one-sided risk.  Here the cash flow should be interpreted of

course, not as an expected cash flow, but as the cash flow assuming that nothing goes wrong.

(b)  Risk Adjustment in Discounting

Suppose that we want to value a risky payment to be received one period from now.  First we address the issue

from a purely theoretical perspective:  What compensation C should an individual receive to be indifferent between the

risky cash flow X and a certain cash flow with the same expected value E(X ).  Using the standard expected utility

criterion we find C from:

(2) .E [u (X )] ' u [E (X ) & C ]

Figure 3 shows graphically how to obtain C given a two-point distribution for X.  Note that the risk introduced here is

a specific example of a Rothschild-Stiglitz increase in risk.  Once we have the value for C we could obtain the

appropriate discount rate µX  for X from the following:

(3)  .E (X )
1 % µX

'
E (X ) & C

1 % r
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E(X)

Figure 3
Risk Adjustment

 For a two-point distribution, the amount, Xc, is the certainty equivalent amount.  The
risk adjustment or insurance premium needed to obtain Xc is given by the interval C.

C

U(X)

X

U[E(X)]

E[U(X)]

Xc

We then find  µX  directly from equation (3) as:

(4)  ,µX ' r %
C (1 % r )
E (X ) & C

where the term after the “+” sign is the risk premium in the “required return” for X.

Adjusting cash flows for risk in this manner is subject to similar problems as the use of the Rothschild-Stiglitz

definition of risk for this purpose:  It is difficult to apply and it ignores the Fisher Separation result.  Notice for instance

that C will differ by individual, and, even for identical individuals, depends generally on initial wealth.  Next we consider

the standard market-based approach for discounting risky cash flows.

A market-based approach is based on the celebrated CAPM (Capital Asset Pricing Model) which we discuss

extensively in the next chapter.  According to the CAPM the expected return on any asset i is determined as

(5)  ,µ i ' r % 8 Cov(ri , rm )

where the covariance term indicates the covariance between the return on asset i and the return on the overall market.

It reflects the fact that only “systematic” risk that is correlated with the market matters since other “non-systematic” risk

may be diversified away.  Further, 8 indicates the “price of risk” which is determined at the market level.

One may now use the “arbitrage” principle and the opportunity cost idea to price the cash flow X :  if one were

to invest amount I in asset X’, with known expected return µX , the expected forward value would be:
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E(FVX’ ) = I (1 + µX ).  Assuming that X’  has the same risk characteristics as asset X we can then set the required return

for X equal to the expected return for X’ :  µX’ = µX .  Then equating the expected forward value of X’ to the expected

cash flow of X we obtain the (present) value of asset X as:

(6)  .VX '
E (X )
1 % µX

Thus, discounting should be accomplished by using the expected return on a “similar” asset as the discount rate.  Of

course, what is similar depends on the particular asset pricing model.  For the CAPM, “similar” means for the returns

of both assets to have the same covariance with the market.  If we apply the CAPM equation in (5) to equation (6) we

can obtain the Certainty Equivalence expression for the value of asset X, as follows.

Bear in mind first that the return on asset X is defined as  given that the asset is priced correctly.rX ' X /VX

Then we can write .  Applying equation (5) to equation (6) and solving for VX  basedCov(rX , rm ) ' Cov(X , rm ) / VX

on this covariance expression we obtain:

(7)  .VX '
E (X ) & 8 Cov(X , rm )

1 % r

Thus, one may account for risk by using the appropriate “opportunity cost” discount rate.  Or, under the assumptions of

the CAPM, one may adjust the expected cash flow for the systematic risk inherent in the cash flow to yield the certainty

equivalent value of the expected cash flow and then discount using the risk free rate.

There are aspects of accounting for risk in multiple-period present value calculations that we have not yet

addressed and which are quite complicated, even in the context of the CAPM.  These aspects are related to cross-period

correlations in cash flows and to uncertainty about discount rates.  We deal with these issues in Chapter V (addressing

results of Fama (1976) and Constantinides (1980)) and further where we treat the issue of intertemporal asset pricing.

(c)  Applications and Exercises

1. Consider the stock  with value V of a company that each year faces the same earnings distribution X. The

earnings are all paid to the stock holders.  There is a probability F in each year that the company fails, in which

case of course its stock becomes valueless.

(a) Explain intuitively that the value of the stock can be written as:

.V '
E (X ) % (1 & F )V

1 % µX

(b) Compare the expression of V here to equation (1).

(c) Assuming that the CAPM applies, solve for V and obtain the Certainty Equivalence form of adjusting

for risk.


