Chapter |. Preliminaries

1. INTRODUCTION

nowing thefactorsthat determinethe pricesof financial and non-financial assetsisimportantin making

decisions at the firm level; it isalso crucial in understanding financial market signals as they apply to

business activity, financial stability, and fluctuationsin aggregate wealth and the distribution of wealth.
When we consider “asset” pricing we often have in mind stock prices. However, asset pricing in general aso applies
to other financial assets, for instance, bonds and derivatives, to non-financial assets such asgold, real estate, and oil, and
to collectibleslike art, coins, baseball cards, etc. Wewill mostly think of the assets as being stocks, but we will also see
that many of the pricing principles that apply to stocks apply to other assets as well.

We may think of any asset as generating (usually) risky, future payoffsdistributed over time. The value of the
asset can be viewed as the present value of the payoffs or cash flows, properly discounted for risk and time lags. At a
partial equilibrium level of analysis, both the risk-adjustment method and its quantitative value, as well as the time-lag
adjustment method and value are taken as given. For our purposes we will be interested mostly in general equilibrium
models in which the proper risk and time adjustments are obtained endogenously.

Obtaining values for asset pricesis quite similar to obtaining asset returns. In particular, for a given stream of
direct payoffs and derived asset prices, the current one-period asset return can found as the sum of current price plus
current payoff divided by previous-period price. Conversely, for given asset returns and given stream of direct payoffs,
the asset prices can be backed out. 1n most cases it will be more convenient for us to focus on asset returns than asset
prices.

Two prominent asset pricing theories, the Arbitrage Pricing Theory and Merton’s I ntertemporal Capital Asset
Pricing Model, provide a very general solution for the factors that affect expected asset returns. It is a common
misperception to view more general models as superior to less general models. The problem with the af orementioned
APT and ICAPM is that they are so general that they have virtually no empirical content. | would characterize this
shortcoming asthe key problemintheasset pricing field. Inthese noteswewill not fail to cover the general asset pricing
models, but we will emphasize other asset pricing models that are less general but are based on specific general
equilibrium models, with specific, economically interesting, factors determining the asset returns.

Asidefromthe " general” asset pricing models and the “ specific” asset pricing model s discussed above, athird
type of asset pricing model may be distinguished: the“pricing by arbitrage’ type. Thistype of model prices assets by
comparison. One creates a“ portfolio” that mimics the payoffs of a particular primary asset. The mimicking portfolio
isthen priced by arbitrage. The portfolio may be constructed such that one may infer the price of a derivative asset (an
option, for instance). Thisderivative asset ispriced only in comparison to the primary asset. Wewill pay little attention
to thistype of asset pricing in the first financial economics course. It will be covered extensively in our third financial
€conomics course.

In the remainder of the chapter we will discussissues related to adjustment of cash flows to account for time
preference in section 2 and issues related to adjustment of cash flows to account for risk in section 3.
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2. THE TIME VALUE OF MONEY
(a) The Subjective Rate of Time Preference

n a standard consumer choice model, one may think of life-time utility U as being determined by

consumption levelsc, inthedifferent T periodsthat the consumer hasleft toliveU = U(c,, C,,....,C;). Time

preference (alternatively impatience, or discounting the future) is said to exist if future consumption, in a
sense to be made precisein the following, isless valuable to theindividual thanis current consumption. Traditionaly,
explicit dynamic models have assumed time separable preferences, which imply a constant rate of time preference.
However, other dynamic preference specifications, in which therate of time preference changes over time are becoming
increasingly popular. It isthereforeimportant to consider ageneral definition for time preference that allows variation
over time. Define the discount rate (or rate of time preference or degree of impatience) at timet as p,. Then we can
define the (one-period ahead) discount factor as , = 1/(1+p,). Thus, if the discount rate at timet is positive p, >0,
then the discount factor islessthan one, B, <1, if thediscount rateincreases (falls), the discount factor falls (increases).

The one-period discount factor at time't is defined exactly in a discrete-time formulation as:

dc

— ‘
dU=0,c.=¢,,=C
Tt +1
dc,.,

D B.(Cps s C 4, C,C,uyCp) = -

ou(c,,...,¢ ;,C,C,...,C)lac,

ou(c,,...,¢_;,C,cC,...,Cp)/ac

The second equality followssince dU =0 = (dU/dc,) dc, + (dU/dc,, ) dc,, . Thediscount factor, inwords, isthus
given asthe Marginal Rate of Intertemporal Substitution between two pointsin time at the location where consumption
at the two points in time is equal. In intuitive terms, it indicates, given initialy that ¢, = ¢, ;, how much of c, the
individual is willing to sacrifice for one extra unit of ¢, ,. Note that, in general, the discount factor may depend on
consumption levels at all pointsin time.*

For atime-separable intertemporal utility specification, utility can be written as:

.
2) u(c, ... c) = El B tu(c,).

The discount factor, then, can be obtained from the definition in equation (1) as:

1 A typical misconception is that time variation in the discount rate implies time-inconsistent behavior. Thisis not the
case as long as the form of the discount function in equation (1) does not change over time. That is, if the discount factor only
depends on the stream of consumption and not explicitly on time [see Strotz (1956)]. For more, relatively non-technical,
information about discounting see Price (1993).

R. BALVERS, WEST VIRGINIA UNIVERSITY. 2 FOUNDATIONS OF ASSET PRICING 5/01



CHAPTER|. PRELIMINARIES

(3) B, (c;s ... 4,C,Chuny Cp) = B

Thus, discount rate and factor are constant for the time-separable utility formulation.

Figure 1 shows that the discount factor can be obtained as the absolute value of the slope of the indifference
curve along the 45° degree line emanating from the origin. Theslope dc,/dc,
time preferenceto exist. Time separability impliesthat theslope dc,/dc,,; doesnot depend onthelevel of consumption
at times other than t or t+1. For the commonly used time separable form in equation (2), the slope of dc,/dc,
the 45° degree line also does not depend on the level of ¢, = ¢,
indifference curve, as shown in Figure 1.

should be smaller than one for positive

.,aong
.1» Which implies that the slope is the same for each

455

Cra1

Figure 1

Time Preference
Utility is time-separable, as indicated by
equal slopes along the 45° line.

For positive time preference, it makes sense to discount future cash flows more than current cash flows. A
natural discount factor for an individual valuing the payoffs of aparticular asset would appear to be the subjective rate
of time preference. However, we will seein thefollowing that (1) individual preferences should have no impact on the
discount rate used in valuing an asset; and (2) even if preferences of all individuals are time-separable and identical, the
proper discount rate in asset valuation is not generally equal to (3.

(b) The Objective Rate of Time Preference.
For simplicity consider here only the two-period world originally studied by the Classical economist Irving
Fisher. For a perfectly competitive world, Figure 2 displays the standard general equilibrium allocation, but for the

composite consumption good at two pointsin time (c, and ¢,) rather than two different consumption goods at one point
intime.
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Y1.:C

45} Po/p;,=1/(1+1)
Y2, G

Figure 2

Objective Discount Factor and Fisher Separation
The objective rate of time preference will be the same for any
two consumers. The objective and subjective rates of time
preference will differ for the representative consumer.

At point A we have the standard condition for a Pareto Optimal allocation sustained
in competitive equilibrium by an equilibrium price ratio:

4 MRIT(c,,c,) = p,/p, = MRIS(c,,c,),

the Marginal Rate of Intertemporal Transformation is equal to the Marginal Rate of Intertemporal Substitution and this
equality is obtained in genera equilibrium through the equilibrium price ratio p,/p;. This equilibrium price ratio
represents the objective (or market) discount factor, generating the objective rate of time preference. Theanalysishere
presumes of course that an aggregate production possibilities frontier and an aggregate preference ordering exist, or,
similarly, that a representative firm and representative consumer exist. Note that we can interpret

5) p,/p, = 1/(1+r),

wherer isthereal interest rate: saving one unit of consumption currently can buy you one more unit in the next period.?
If we assume existence of arepresentativefirm and consumer, then thetwo equalitiesin (4) can bederived from standard
optimization problems:

Max

vy, Y= PY1t Yo subject to T(yl,yz,'F) = 0: for given inputs T maximize profit, subject to
172

the transformation technology, yielding, in market equilibrium ( 'y, = ¢, Y, = C,), thefirst expressionin (4), and:

2 One may verify that the Fisher analysis determines the market interest rate by setting savings (postponing
consumption to the next period) equal to physical investment (reserving inputs for production in the next period).
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Max

c. c. Y(c,c), subjectto py, +p,y, = y: maximizethe, possibly non-time-separable, utility
12

subject to a budget constraint, which yields the second equality in (4).

Consider the preferences of an individual consumer, taking market prices as given. In Figure 2, view the
allocation A asthat for a representative consumer a. For aconsumer b that differs from the representative consumer a
but has an identical wealth endowment, the optimal allocation may be found at point B. Note that MRIS, = MRIS;;
thisfact illustrates our first result of interest, namely that individual preferencesareirrelevant for the discount factor that
should guide the individual’s decisions, including the decision how to value a particular asset. Thisis known as the
Fisher Separation result. It also appliesin acorporate finance situation where the way to maximize the value of thefirm
to shareholders should be independent of individual preferences but instead should be based on market prices, such as
the market discount rate. The argument is that any feasible trade for the individual must lie along the intertemporal
budget line. Any allocation along the budget line that differsfrom point B, of course will change the realized marginal
rate of intertemporal substitution but will also move the individual to alower indifference curve.

A second result may be seen by considering point C in Figure 2 which is the intersection between the market
discount rate line (and the budget line for the representative consumer) and the 45° line. It indicates al so the subjective
discount factor of the representative consumer, given asthe slope of theindifference curveat point C. If the preferences
are intertemporally separable then this slope is equal to the constant . Thisis clearly different from the slope of the
budget line.

Thus, even for the representative consumer, the objective and subjective rates of time preference will differ.
When preferences are intertemporally separable both are different constants. The objective discount factor is given by
MRIS(c,,c,) = Bu /(cz)/u /(cl) which equals 1/(1 +r) and differs generally from B which equals by definition
1/(1 +p), since the MRIT may easily imply an allocation where ¢, and ¢, are not equal. Hence, the representative
consumer will discount cash flows differently (namely by the constant objective discount factor) from the way she will
discount utility (which, for intertemporally separable preferences, is discounted by the constant subjective discount
factor). In simple (but imprecise) terms one may say that wealth is discounted differently than consumption.

(c) Present Value and Value Additivity

Aswe have seen, in the certainty context of the Fisher model we can usethereal interest rate to discount future
consumption streams. Take now areal cash flow to be received (with certainty) at atime s periodsin the future. What
isits present value? We can obtain the correct answer in two different ways. First, using the idea of opportunity cost.
By postponing the cash flow by s periods you forego interest. The Future Value at time sof aninitia investment X, is
givenas FV, = (1+r)*X,, where we account for periodic compounding and we assume a constant real interest rate. If
we turn this around and set the Future Value at time s equal to a certain cash flow CF,, fixed in advance, then we can
find the Present Value at time 0, PV,, as

CF
(6) PV, - s_
(L+r)
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Note that, in aperfect market environment, the opportunity you sacrifice—your next best alternative used for cal culating
the opportunity cost—must be economically identical to the project you evaluate. Given that the return on this next best
aternativeis equal to r , we can view the present value calculation as simply representing arbitrage: the cash flow of
the project should be valued such that both this project and the alternative generate the same return.

Asasecond, related, approach to calculating present value, one could extend the logic of the Fisher analysis
toamulti-period context. Assuming that the objective discount factor remains constant we then would havethe objective
discount factor as p/p, = (Py/Ps 1)(Ps_1/Ps_5) ---(P1/By) = [1/(1+1)]°. Thisistheappropriatefactor to discount cash
flows, yielding again equation (6).

In the perfectly competitive Fisher world it aso follows that each component of a stream of cash flows could
be bought or sold separately. Thus, the present value of a stream of cash flowsisjust the sum of the present values of
the separate cash flows. Thisproperty iscalled Value Additivity. Accordingly, wecanwritethe present value of astream
of future payments as:

> CF

@ PV = X (1”5)3.

In practice, Treasury Bonds are broken up into their separate components: coupon payments and the zero-coupon
remainder ( the latter called a“strip”). Asdealersfind it worth their while to incur the transaction costs to do this, it
appears that VValue Additivity holds only approximately in actuality.

(d) The Gordon Growth Model

The cash flows in equation (7) could follow any pattern. Usually they will be zero beyond some point T. In
many cases cash flows can only be approximated and one has but vague ideas of its pattern over time. Thesevagueideas
are often best summarized by an initial value, that is quite precisely known, and an average growth rate, maybe less
precisely known.

The “Gordon Growth Model” makes the practical assumptions of a known initial cash flow X; and a known
constant growth rateg. It isauseful model not only becauseit provides areasonable approximation to the entire future
of cashflows, it also generatesasimple expression for the Present Value. With these assumptions, equation (7) becomes:

= (1+0)S X X

8 PV, = =1
® ° X; (1+1)s r-g

That the second equality holds is easy to see by realizing that we have an infinite geometric series with a constant
geometric factor of declineof (1+g)/(1+r). Clearly, if cash flows grow at a higher or equal rate compared to the real
rate of interest, g$ r, the present value isinfinite as the individual present value components do not decline over time.

Equation (8) can be quite useful in a variety of cases. One application is obtained if we apply the Gordon
Growth Model to the overall stock market. Strictly taken the model only applies for a fairly certain growth rate.
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However, aswewill find later in this chapter, one may just discount expected cash flows for risk by discounting by the
appropriate expected real stock return (the proper opportunity cost for the riskiness of this particular project) rather than
the real interest rate,

The only cash flows generated by stocks in the aggregate are the dividend payments since we can ignore the
pure distribution effects rendered by capital gains or losses from stock trading. Thus, the value of a stock should be the
present value of the stream of dividends generated. In equation (8) we may thus interpret X; as atypica annual
aggregate dividend payment and PV, asthe current price of astock index. The price-dividend ratio is then equa to
PV,/X, = PV,/X,. If average price-dividend ratios for S& P 500 firms equal around 33. Thisimplies from equation
(8) that r - g= 0.03. Historicaly, real stock returns have been around 0.08 (8%). Hence, stock valuationsimply that
g = 0.05, that dividends growth is expected on a permanent basis to equal 5%. This number substantially exceedsthe
around 2% historical growth rate of real per capita GDP and the similar projections for its growth. Explanations may
be that the growth of profitability on apermanent basisis expected to exceed real growth of GDP; that the risk premium
inherent in stock returns has fallen permanently; that we have a permanently altered economy; or that stocks are simply
overvalued.

(e) Inflation and Valuation

A stylized fact is the observation that stocks are not a perfect hedge for anticipated inflation. Inflation,
anticipated aswell as unanticipated, appearsto have aclear negativeimpact on real stock returns. Herewewill seethat,
at first sight, inflation should have no impact on stock prices and returns.

Assumethat future dividendsin real termsare unaffected by inflation ©. Thisisareasonable assumption since
firm profitsin real terms should not change—both costs and revenues should change with inflation, causing nominal
profitsto rise with inflation and real profitsto be unchanged. Using the information of the present value calculationin
equation (8) for simplicity, it is assumed that real cash flow X, is not affected by inflation and thus equals (1+ B)X; in
nominal terms. Dueto inflation, nominal dividendswill be growing at ahigher rate g, and we now discount the nominal
cash flows by the nominal returni. Equation (9) then givesthe valuation for the Gordon Growth Model when inflation
isintroduced:
= (1+9g)%t(L+m) X (L+m)X, X,

9 PV, = - .
® 0 ; (1+i)s (1+i)-(1+g,) r-g

The second equality follows by the definitions of real interest rater: (1 +i)/(1+ =) = 1 +r and real growth rate g:
(1+g)/(1+m)=1+g. Itfollowsin the context of our assumptionsthat (a) current stock prices are not affected by
anticipated inflation and that (b) one may alternatively discount nominal payoffs with the nominal interest rate or real
payoffs with the real interest rate.

Empirically, it appearsthat both anticipated and unanticipated increasesin inflation lower stock prices, so that
stocks appear to be poor inflation hedges. Thisis clearly counter to our discussion which impliesthat inflation’ s effect
on stock prices should be neutral. The most prominent explanation for this apparent non-neutrality is by Fama (1981):
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since stocksreact quickly to new information, they decrease on news of abusiness cycle downturn, before this downturn
happens. But adownturnin activity, given constant money growth, implieshigher inflation (in aclassical macro model).
Thus, higher inflation is associated with (but does not cause!) lower stock prices; which is what we find empirically.

(f) Compounding

Consider the calculation of two different typesof “portfolio” returns: (1) ndifferent assetsheld for one period;
(2) one asset held over n periods.

In the first case, no compounding occurs since the return on asset i cannot be reinvested in asset j during the
one period. Thus the portfolio return should be calculated as the arithmetic average:

n

(10) r(nassets) = X s,r;,,
i=1

where the s, indicate the fraction of total wealth invested in asset i during period t . Thus the portfolio return is found
as aweighted arithmetic average.

In the second case, the return on the asset for a period is assumed to be fully reinvested in the same asset in the
subsequent period. If no reinvestment takes place (and the returns are kept under the mattress) then it is appropriate to
calculate the per-period return as an arithmetic average. But, inthe moretypical case of reinvestment in the same asset,
compounding should be taken into consideration:

n 1/n
1D 1+r,(nperiods) = ( Im(1+ rit)] .
t=1

Here the per-period return on asset i is found as the geometric average of the returns in each of the n periods. The
rationalefor thisdefinitionis, of course, that receiving this geometric average n periodsin arow yields exactly the same
final wealth as receiving the actual returnsin each period.

If the returns are fairly small then the two approachesyield very similar results. Intuitively, this makes sense
since compounding is a second-order effect (interest upon interest) which becomes negligible if the first-order effects
aresmall. Mathematically, we often makelogarithmic approximations, taking advantage of thefact that log (1 +X) = X
for small x. Applying this approximation to equation (11), and taking advantage of several of the properties of logs,
yields:

(12) r,(nperiods) = (1/n) X r,, .
t=1

Equation (12) gives of course an equal-weighted version of the result in equation (10).

The compounding in equation (11) isdiscrete: thereturnispaid only at the end of each period. 1n many cases
returnstrickle in on afairly continuous basis. And banks, for instance, should pay and receive interest on adaily basis
(pretty much continuous compared to the semi-annual coupon payments made by most bonds) since one of their
opportunitiesis buying or selling federal funds, which provide daily interest.

Consider an interest payment r to be made once at the end of aperiod. It will provide atotal (gross) return of
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1+ r attheend of the period. However, if thispayment ispaid semi-periodicaly, i.e., intwo equal parts, and the early
payment is reinvested, then the gross payoff at the end of the period becomes[1 + (r/2) ]2 More generally, if interest
ispaid n times during the period, the gross payoff becomes[1+ (r/2) ] If the same z-equal- payments scenario holds
in each of n periods, weget [1 + (r/2) 1.

Continuous compounding means that we have to take the limit of zgoing to infinity. Employing the definition
of e, thisyields the identity:

@w "Mz = e
Both sides of equation (13) indicate of course the total return. If one wantsto know the average return per period, it is
necessary to take the n-th root on both sides, yielding e for the right-hand term.

If we compare the one-period discrete compounding gross return 1 + r, to the one-period continuous
compounding gross return e’ , it should be clear that in order for both end-of-period gross returnsto be equal, 1+ ry
= e, weneedry>r. Additionaly, if we take thelog of both sides of the previous equation, we get

14 r=1log(l+ry) = ry.

Taking logs provides an approximation for the discrete-compounding return but an exact expression for the continuous
compounding return.

A further advantage of continuous compounding isthat, under some circumstances, it allowsonetowork inlog
terms, whichinturn allow linear expressions. Consider for instance acase where all dividends earned on aportfolio are
automatically reinvested in the same portfolio. Thevalue at timet of the portfolio , with dividends reinvested, is given

as p". The gross return then is equal to p™% /p™. Given that the return is continuously compounded, we have:

as) e -pfp® - Sy = inpdy - inp®,
wherethelatter inequality follows by taking logson both sides of thefirst inequality. Many data setsexpress stock prices
or stock-index prices as prices “with dividends reinvested”; for such data (continuously compounded) returns are
calculated most easily by subtracting the log of the previous price observations from the log of the current price
observation.

Lastly, note that a drawback of using continuously compounded returns is that calculating weighted average
portfolio returns is not straightforward. While for discrete compounding one may use equation (10) above, for
continuous compounding there is no easy expression akin to equation (10) for cross-sectional portfolio returns. Using
a simple equal-weighted two asset example:

(16) e = (1/2)e™ + (1/2)e™; but rS # (L2)rS + (1/2)r).

Thus, continuous compounding may be more convenient in cal culating time series returns, while discrete compounding
may be easier in calculating cross-sectional returns.
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As an example, we can apply continuous compounding to the Gordon Growth Model where we now assume
that afixed payment X is paid continuously through time. The value of this asset then is given as:

@n  [er(e"X)dn - X [el@dn - X ez - X
0 o g-r r-g

Here we obtain essentially the same result as in the discrete-compounding case except that all constants need to be
interpreted as continuous-compounding-based.

(g) Remaining Issuesin Time Discounting

Even for deterministic cash flows, the previous discussion has not exhausted theissuesthat may arisein valuing
payments that are delayed.

Oneissueisliquidity. There should be a substantial difference in valuing afuture cash flow of an asset that is
highly marketable as compared to an asset that could not be sold until the payment isdue. For the latter type of asset
(possibly your own human capital before obtaining your degree, or software in development), the liquidation value is
important. In case of apersonal emergency, when the project has to be abandoned for whatever reason, its liquidation
value would matter.

Asapartial answer to thisliquidity issue, consider first the opportunity cost of holding a perfectly marketable
asset. Asthe asset isriskless and could be sold for true value on short notice, the proper opportunity cost is the rate of
interest of ashort-term risklessbond, such asaT-Bill. Onthe other hand, the opportunity cost of holding an asset whose
intermediate value may vary is more like the rate of return on along-term riskless bond, such as a Government Bond.
Based on the term structure of interest ratesliterature, the rate on along-term bond usually exceeds that on a short-term
bond, so that the less liquid asset will be worth less.

A further issueisrelated to variability of the opportunity cost, the discount rate. If the variability is known or
predictable, it isnot abig issue, the discount factor will just differ by period. An uncertain opportunity cost, however,
is adifferent matter, especialy if the opportunity cost is correlated with the cash flow. It seems then that, our simple
time-discounting method requires not only known cash flows but also a known pattern of the opportunity cost in order
to be strictly valid. The impact of uncertainty on discounting cash flowsisintroduced next and is further examined in
Chapter V.

(h) Applications and Exercises

1 Consider the Gordon Growth Model with afinite stream of cash flows. Specifically, assume that cash flows
grow at a constant rate until time T and are zero after time T.

€) Derive the Present Value of the stream of payments under discrete compounding.
(b) Derive the Present VValue of the stream of payments under continuous compounding.
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2. Derive the Gordon Growth Model. Explain how inflation istaken into consideration in thismodel. Assume
that projected inflation is 3%, projected stock returns are 10% and the growth rate of earningsis projected to
be5%. Calculatewhat the price/earningsratio should befor an average stock according to the Gordon Growth
Model.

3. Prove that the n-period discount factor at time't , B[‘ [defined as in equation (1) but with ¢, = ¢, ,; for all

n-1
0 <i <n-1],isequal tothe product of one-period discount factors. II B, ;.
i=0

3. ACCOUNTING FOR RISK
(a) One-Sided and Two-Sided Risk

he standard use of the concept of risk as used by finance academicians relates to a two-sided risk: it

considers the impact of losses as well as gains, relative to expectation. This concept of risk was first

formalized precisely by Rothschild and Stiglitz (1970). For arisky cash flow, they define an increase
in risk as adding independent noise to the cash flow for a given expected value of the cash flow, which, they show, is
equivalent to putting moreweight in thetails of the cash flow distribution. They provethat any risk averseinvestor (that
is, one who has concave utility over consumption) will dislike such anincreaseinrisk. (Infact they show that, only for
such adefinition of risk, any risk averse investor dislikes more risk)®.

The Rothschild-Stiglitz definition of risk isan intellectually satisfying one. However, itisof little practical use
in pricing assets for the following reasons. First, it provides only a partia ordering of risky prospects. That is, many
risks cannot be compared in this way since one can not separate out an independent noise by which these risks differ.
Thus, some investors would prefer the one risk, some would prefer the other risk. Second, even if two risks can be
ranked in the Rothschild-Stiglitz way, thisis only an ordinal ranking and it is difficult to put a cardinal nhumber on the
difference for pricing purposes. Third, this general definition of risk is individual based and ignores the Fisher
Separation result that impliesfor competitive markets. Thus, in the following we resort to more operational definitions
of risk. Conceptually, however, we continue to think of risk in these general terms.

In the business community, the implicit concept of risk is often aone-sided one. “Putting your money at risk”
means that you may loseit. It doesn't really speak to what happens when you gain. This concept of risk is associated
with default risk (as opposed to the two-sided market risk) and occurs in its purest form in arisky bond or junk bond.
It differs from the academic definition of risk in that it matters even for arisk-neutral individual. It further is difficult
to work with since introducing one-sided risk implies achange in the mean of the payoff aswell asin the variance of the

3 This concept of risk considers an increase in payoff variability for a given mean payoff and is often referred to asa
“mean preserving spread.” A slight generalization is the concept of “second-order stochastic dominance”: A “lessrisky” payoff
distribution second-order stochastically dominates a“morerisky” payoff distribution if all risk averse individuals prefer it. This
generalizes the Rothschild-Stiglitz concept of risk since this may occur not only if the second payoff distribution is amean
preserving spread but also if the mean of the second payoff is not preserved and is lower.
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payoff. Inthe following we always employ the two-sided concept of risk. We show next how to take one-sided “risk”
into account.

Assume that the market is risk neutral so that two-sided risk is irrelevant (in exercise 1 below we drop the
assumption of arisk neutral market). Imagine afirm issuing a perpetual bond with constant annual coupon payment X
and a probability of bankruptcy of F. When the firm goes bankrupt no further coupon payments will be paid. What is
the value of this perpetual bond? Given arisk-neutral market, all we need to do isto calculate the expected cash-flow
for each period and discount by therisk free interest rate. The expected cash flow for, say, period nis easily calculated
as E(CF)) = (1- F)""1X. Thus, the (present) value V of the perpetual bond equals:

X ,(1-F)X (1-Fy¥X _ X

W vep e R R

Where the second equality holds pretty much along the lines of the Gordon Growth Model (but with F replacing - g).
Equation (1) isasif the probability of default is added as part of the discount rate: you discount payments further in the
future by more because of impatience and because you are less likely to receive them.

Insummary, one-sided “risk” may betakeninto account by simply adjusting the expected value of thecash flow.
Clearly, ahigher probability of default lowers expected cash flows by more the further in the future they are expected
to bereceived. Thisaffectsthereforeinvestorseveninarisk neutral market. Wewill seethat, in arealistic risk averse
market, one-sided “risk” may still be riskless according to certain asset pricing modelsif it is uncorrelated with market
returns and therefore disappearsin awell-diversified portfolio. Alternatively, if we do not want to adjust the expected
value of the cash flow to account for default risk, equation (1) shows that we may be able to augment the risk free
discount rate with the default probability to account for one-sided risk. Here the cash flow should be interpreted of
course, not as an expected cash flow, but as the cash flow assuming that nothing goes wrong.

(b) Risk Adjustment in Discounting

Suppose that we want to value arisky payment to be received one period from now. First we addresstheissue
from apurely theoretical perspective: What compensation C should an individual receive to be indifferent between the
risky cash flow X and a certain cash flow with the same expected value E(X). Using the standard expected utility
criterion we find C from:

2 E[u(X)] = u[E(X) -C].
Figure 3 shows graphically how to obtain C given atwo-point distribution for X. Note that the risk introduced hereis

a specific example of a Rothschild-Stiglitz increase in risk. Once we have the value for C we could obtain the
appropriate discount rate y, for X from the following:

E(X) _ E()-C

3
®) 1+ 1+r
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Figure 3
Risk Adjustment

For atwo-point distribution, the amount, X, is the certainty equivalent amount. The
risk adjustment or insurance premium needed to obtain X is given by theinterval C.

Wethen find py directly from equation (3) as:

C(1l+r)

4 “x:r+E(x)_C,

where the term after the “+” signisthe risk premium in the “required return” for X.

Adjusting cash flowsfor risk in this manner is subject to similar problems as the use of the Rothschild-Stiglitz
definition of risk for thispurpose: Itisdifficult to apply and it ignores the Fisher Separation result. Notice for instance
that C will differ by individual, and, even for identical individuals, dependsgenerally oninitial wealth. Next we consider
the standard market-based approach for discounting risky cash flows.

A market-based approach is based on the celebrated CAPM (Capital Asset Pricing Model) which we discuss
extensively in the next chapter. According to the CAPM the expected return on any asset i is determined as

(5) M= 1+ ACov(r,r.),

where the covariance term indicates the covariance between the return on asset i and the return on the overall market.
It reflectsthefact that only “systematic” risk that is correlated with the market matters since other “ non-systematic” risk
may be diversified away. Further, A indicates the “price of risk” which is determined at the market level.

One may now usethe“arbitrage” principle and the opportunity cost ideato pricethe cash flow X: if onewere
to invest amount | in asset X', with known expected return i, , the expected forward value would be:
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E(FVy)=1(1+ py). Assumingthat X' hasthe samerisk characteristics as asset X we can then set the required return
for X equal to the expected return for X' : . = Yy . Then equating the expected forward value of X' to the expected
cash flow of X we obtain the (present) value of asset X as:

E(X)

(6) V, = .
1+,

X
Thus, discounting should be accomplished by using the expected return on a“similar” asset as the discount rate. Of
course, what is similar depends on the particular asset pricing model. For the CAPM, “similar” means for the returns
of both assets to have the same covariance with the market. If we apply the CAPM equation in (5) to equation (6) we
can obtain the Certainty Equivalence expression for the value of asset X, as follows.
Bear in mind first that the return on asset X is defined as r, = X/V, given that the asset is priced correctly.
Then we can write Cov(ry,r ) = Cov(X,r_)/V,. Applying equation (5) to equation (6) and solving for V, based
on this covariance expression we obtain:

E(X) - ACov(X,r,)

7 V., =
¢ X 1+r

Thus, one may account for risk by using the appropriate “ opportunity cost” discount rate. Or, under the assumptions of
the CAPM, one may adjust the expected cash flow for the systematic risk inherent in the cash flow to yield the certainty
equivalent value of the expected cash flow and then discount using the risk free rate.

There are aspects of accounting for risk in multiple-period present value calculations that we have not yet
addressed and which are quite complicated, even in the context of the CAPM. These aspects are related to cross-period
correlations in cash flows and to uncertainty about discount rates. We deal with theseissuesin Chapter V (addressing
results of Fama (1976) and Constantinides (1980)) and further where we treat the issue of intertemporal asset pricing.

(c) Applications and Exercises
1 Consider the stock with value V of a company that each year faces the same earnings distribution X. The

earningsare all paid to the stock holders. Thereisaprobability F in each year that the company fails, in which
case of course its stock becomes valueless.

@ Explain intuitively that the value of the stock can be written as:
V- E(X) + (1-F)V
1+ '
(b) Compare the expression of V here to equation (1).

(© Assuming that the CAPM applies, solvefor V and obtain the Certainty Equivalence form of adjusting
for risk.
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