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ABSTRACT

In linear-quadratic control (LQC) problems with some singularities in the control cost, the state cost,
and/or the transition matrices, we derive a reduction of the dimension of the Riccati matrix,
simplifying iteration and solution.  Employing a novel transformation, we show that, under a certain
rank condition, the matrix of optimal feedback coefficients is linear in the reduced Riccati matrix.
For a substantive class of problems, our technique permits scalar iteration, leading to simple
analytical solution.    

JEL classification:  C61; C63, D83

Keywords:  Linear-quadratic control; Riccati equation; Riccati reduction; Kalman filtering;
Intertemporal optimization

*  The authors thank Victor Claar for stimulating their interest in the subject material, and
three referees for their very careful and helpful advice.



1  With the exception of Binder and Pesaran (2000) these papers focus on infinite horizon problems.  The
points raised in our paper apply to finite horizon problems as in Binder and Pesaran but are equally relevant for
infinite horizon models.

Reducing the Dimensionality of 
Linear Quadratic Control Problems

1.  Introduction

The preeminence of computable general equilibrium models has stimulated interest in the

solution procedures for larger-scale models.  Most commonly, linear rational expectations

models are considered which, typically, are derivable from linear-quadratic control (LQC)

problems.  The recent work by Sims (2000), Binder and Pesaran (1997, 2000), King and Watson

(1998), Amman (1997), Amman and Neudecker (1997), Anderson et al. (1997), Anderson and

Moore (1985), Ehlgen (1999), and Klein (2000) concentrates on numerical procedures that (1)

allow speedy and accurate computation of results, and (2) apply as generally as possible, in

particular to systems with non-invertibilities stemming from a singular transition matrix or a

singular control cost matrix.  These papers improve on the work of Vaughan (1970) and

Blanchard and Kahn (1980).1  

The purpose of this paper is twofold.  First, we show that when the control cost matrix or

the transition matrix is singular, the dimension of the Riccati equation can be reduced, allowing

existing solution techniques or direct iteration for the Riccati equation to become

computationally more efficient.  Second, we show that for one class of problems explicit

analytical solutions for the dynamic (and algebraic) Riccati equations can be obtained, and that

for this class, subject to a rank condition, the optimal controls are a linear function of a scalar

Riccati kernel.

The paper derives a simple rank expression that places an upper bound on the effective



2  For an example see Claar’s (2000) model of cyclical and natural unemployment rates.
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dimensionality of the system for analytical and computational purposes:  Prior computation of

the rank of a composite matrix constructed from all coefficient matrices in the problem statement

allows the researcher to establish this bound.  The advantage is that one may readily determine up

front whether the system has a simple analytical solution, or to what extent reformulation of the

problem along the lines delineated here may reduce computation time or improve the

transparency of the model.

Duality between Linear quadratic control (LQC) and Kalman filtering provides intuition

for why the dimensionality of a particular system may be reduced.  Consider the following class

of Kalman problems.2  An observation depends linearly on two unobserved state variables

following stochastic processes: .  One may describe the uncertainty of the state bywt ' y1 t % y2 t

considering the conditional variances  of the state variables and their conditionalF2
1 t , F2

2 t

covariance  (three numbers, stored in a 2 x 2 covariance matrix).  However,F12 t ' F21 t

conditional on having observed , it is easy to derive from  thatwt y1 t ' wt & y2 t

 so that one number is sufficient to describe the state uncertainty. While theF2
1 t ' F2

2 t ' & F12 t

intuition for simplification here is straightforward, our rank expression implies a potentially

complex interaction between the different singularities in the system that is not always intuitive.

The Kalman application also provides a class of problems for which our reduction

approach may provide major computational advantages.  Namely, for those models in which a

Kalman filtering problem is embedded in a larger dynamic model that is not linear quadratic,

such as an active learning model.  Typically, such a model is analyzed with numerical dynamic

programming methods in which the “curse of dimensionality” is a major impediment.  Reducing



3 The relevant state variables in active learning models include the conditional covariances and
(sometimes) the conditional means of the relevant underlying state variables. Reduction of the Riccati dimension
does not reduce the number of conditional means but significantly reduces the number of covariances to be
considered. As an example,  in Wieland (2000) the state space discussed in his Appendix A3 could be reduced from
four to two state variables if there were no measurement error in his equation (1).
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the number of state variables in the grid then provides a substantial computational advantage.3

 A reduction as proposed here was employed by Balvers and Cosimano (1994) in

lowering the dimensionality of their active learning model, but the approach has not been

systematically investigated.  Mitchell (2000) derived explicit analytical solutions to the 2 x 1

linear-quadratic control problem (two target variables and one uncosted control in the control

case, or two state variables and one identity in the Kalman case), but his results were not

obviously generalizable.  In this paper we significantly extend the class of LQC models which

can be simplified or even solved analytically.

The paper is organized as follows.  Section 2 derives the theorems that state how the

dimensionality of the model can be reduced and by how much, and how under a certain rank

condition the optimal feedback control matrix is linearly related to the reduced Riccati matrix. 

The analytical solution is given for one class of cases and examined in section 3.  In Section 4 we

conclude the paper by summarizing the advantages of our approach and discussing an algorithm

of a MATLAB program (which is further described in Appendix C) that automates our technique

for practical use.

2.  REDUCTION OF DIMENSION

2.1  The control problem

In this section we show how to reduce the dimension of the Riccati equation of optimal

control.  In so doing we illuminate the underlying structure of the dynamics.  Two initial lemmas

establish the structure of the Riccati matrices, and Theorem 1 gives the reduced dynamics.  The

reduced problem is shown in Theorem 2 to be sometimes amenable to further simplification of
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the solution for the control feedback matrix.  Theorem 1* deals with a further reduction of the

Riccati matrix dimension which is possible under some conditions.

The reduction that we present is separate from the concept of reducing a system to

“minimal” form for optimal control or Kalman filtering.  A system is in minimal form if the

number of state variables describing the system cannot be reduced any further.  This form is

attained if and only if each state variable is controllable (meaning loosely that the control

variables can directly or indirectly impact each state variable) as well as observable (meaning

loosely that each state variable is relevant in affecting the objective).  See Hannan and Deistler

(1988).  Our Riccati reduction, however, applies even if the system is controllable and observable

and, hence, minimal.  This reduction can be achieved because the effective dimension of the

Riccati matrix (the dimension of the Riccati “kernel”) is less than the dimension of the state

vector even if the latter is minimal.

2.2  The LQC  problem

We start with a general finite horizon, stochastic LQC problem, Problem 1.  The square

coefficient matrices , , and  are allowed to be singular (but matrices  and  must beK̄ R Ā K̄ R

symmetric and satisfy the second-order condition in Appendix A), and , , and  need notJ C̄ Ḡ

have full row or column rank.  Equivalent restrictions apply for the time T terminal coefficient

matrices.   Problem 1 is:

(1a) V ( ȳs , s ) '
Min

{ ūt }
T
s%1

Es 'T&1

t's%1
$ t [½( ȳ )

t K̄ ȳt ) % ( ȳ )

t J ūt ) % ½( ū )

t R ūt )]

+  ,½ $T ( ȳ )

T K̄T ȳT % 2 ȳ )

T JT ūT % ū )

T RT ūT )

(1b) subject to     ,   ȳt ' Ā ȳt&1 % C̄ ūt % Ḡ gt , t ' s%1 , ... , T , ȳs
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where the state vector  is   x 1 , the control vector  is  x 1, and the vector of i.i.d. randomȳt n̄ ūt k

shocks is  x 1; the coefficient matrices are conformable.   Appendix A provides the a standardg

transformation of the above LQC problem into a decision problem  which has  no control costs or

discounting and no stochastic terms.

The simple transformation in Appendix A translates LQC Problem 1 into Problem 2

below,  which has a state vector containing all costed variables.  The transformation will have

increased the size of the state vector but additional standard transformations that reduce the size

of the state vector can be applied to render the problem observable and controllable so that the

dimension of the state vector is “minimal.”   This process (which we have programmed in

MATLAB) initially may or may not have decreased the dimension of the state vector.  However,

the idea is that starting from a dimension n of the state vector, the dimension of the Riccati

matrix in LQC Problem 2 can be reduced to a size of n-k  where k is the size of the control

vector.  This dimension is typically lower than the dimension of the “minimal” state vector.  

If the control cost matrix, the state cost matrix, and the transition matrix are all of full

rank and the problem is minimal, then the addition of the control variables plus the

transformations to again make the problem observable and controllable must add the size k of the

control vector to the state vector; and in the current section we reduce the Riccati dimension by k

so that the net gain is zero.  However, if singularities exist in the control cost matrix, the state

cost matrix, or the transition matrix, then our technique usually reduces the dimension of the

Riccati dynamics, sometimes to the point where an analytical solution is possible.  In the large

class of LQC problems where the initial problem has no control costs and an invertible state cost

matrix, Problem 2 below applies directly and our following reduction technique reduces the

dimension of the Riccati matrix from n to n-k or less.

LQC Problem 2 is:



4 We make the assumption that K is invertible in the text, even though this is not necessary to apply our
MATLAB program in which we employ what is effectively a generalized inverse for K.  To avoid additional
complexity we do not use generalized inverses in the paper.  For practice purposes, the process of rendering the
problem minimal often produces an invertible K matrix.  The assumption that C has full column rank is required for
the necessary second-order condition that C’KC be positive definite.  If C is not of full column rank, second-order
conditions must fail because of redundant controls.
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(2a)  ,V (ys , s ) '
Min

{ut }
T
s%1

½(y )

T KT yT ) % 'T&1

t's%1
[½(y )

t K yt )]

(2b) subject to   , yt ' A yt&1 % C ut , t ' s%1 , ... , T , ys given

where the state cost matrices K and KT  and the transition matrix A are n x n , the control

multiplier matrix C is n x k, the state vector yt is n x 1 , and the control vector ut is k x 1.   The

cost matrix K and the terminal state cost matrix KT  are positive definite and hence nonsingular,

and C has full column rank;  A need not have full rank.4  

It is well known [for example, Chow (1975)] that the optimal controls for Problem 2 are

given by:

(3)  ,            t # T ,u opt
t ' & (C ) Ht C )&1 C ) Ht A yt&1 / &Ft yt&1

(4) ,     ,    t # T, Ht&1 ' K % A ) Ht A & A ) Ht C (C )Ht C )&1 C ) Ht A HT ' KT

where the symmetric n x n  matrix  is positive definite.Ht

2.3  Some initial intuition

Combining the equations of motion (2b) with the optimal control choice (3) yields the

optimally controlled state variables:

(5) .y opt
t ' [ I& C (C ) Ht C )&1 C ) Ht ] A yt&1
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Pre-multiplying both sides of equation (5) by  gives thatC )Ht

(6) .C )Ht y opt
t ' 0k , n

This means that the optimal control choices in each period generate  k  linear dependencies

among the n state variables (remember that C has full column rank k and that Ht has full rank n): 

in LQC without control costs, associated with each control is a linear dependency;  thus, the

essential dynamics of the decision problem has dimension n - k.

We apply our technique to a general formulation that may not be minimal.  Whereas we

might start from a less general, minimal formulation, this restriction would needlessly limit the

applicability of the technique because minimality of the problem does not affect the analysis that

follows.  Our MATLAB program, however, can convert any LQC problem into minimal form

and to understand more clearly the parsimony of our approach one may think of minimality as

being imposed.

How, then, is it possible that a dimension less than the minimal number of state variables

is needed to describe the Riccati dynamics of the model?  The answer, with details provided in

the following, is that only n - k state variables are involved in obtaining the value function and

capturing the dynamics of what we call the Riccati kernel.  The remaining k state variables are

necessary only to capture the state dynamics (as implied by minimality). 

2.4  The basic reduction

Equation (4) can be written as equations (7) and (8):

(7)  ,            t # T ,Ht&1 ' K % A ) Pt A

(8)  ,            t # T.Pt ' Ht & Ht C (C )Ht C )&1 C ) Ht



5 The symmetric n x n   matrix is not typically employed in dealing with optimal control problems, but inPt

the dual Kalman filtering context has the familiar interpretation of the covariance matrix for the unobserved state
variable for the current period conditional on current information (while  is the covariance matrix conditional onHt

the previous period’s information).
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The approach in this paper is to exploit restrictions inherent in the  matrix to simplifyPt

the solution of Problem 2.5  By equation (8) we have:

(9)  ,            t # T,Pt C /
P1 t P2 t

P3 t P4 t

C1

C2

' 0n , k

where, defining , we have that  is q x q,   is q x k, , and  is k x k ;q ' n & k P1 t P2 t P3 t ' P )

2 t P4 t

 is q x k, and  is k x k.    and  are symmetric. C1 C2 P1 t P4 t

Since C is of full column rank, there is at least one k x k sub-matrix of C that is invertible.

Proper prior arrangement of the  vector (and concomitant arrangement of C, A, K, and KT ) putsyt

these k rows together at the bottom of C guaranteeing that C2  is invertible.  We then derive:

LEMMA 1 (REDUCTION TO THE DYNAMIC CORE OF ).  The n x n matrixPt
 can be written as:Pt

(10)  ,            t # TPt ' M Mt M ) , Mt / P1 t

(11)  ,M /
In&k

& (C )

2 )&1 C )

1

where M is an n x q matrix, and  is invertible with dimensions q x q.Mt

Proof.   See Appendix B1.    �
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It is important to relate the Riccati kernel  to the solution of LQC Problems 1 and 2 –Mt

equations (3) and (4) – in a meaningful way.  Lemma 2 provides a useful link.

LEMMA 2 (RELATING  AND ).  The q x q matrix  in equation (10)Mt Ht Mt

 is positive definite and is given by:

(12) ,            t # T.Mt ' (M ) H &1
t M )&1

Proof.  See Appendix B2.     �

Employing Lemmas 1 and 2 we provide the dynamics of .Mt

THEOREM 1 (DYNAMICS OF ).  For all  t 0 {s+1, T } we have :M&1
t

(13)  ,     ,    M&1
t&1 ' B1 & B )

2 ( M&1
t % B3 )&1 B2 M&1

T ' M )K &1
T M

with  , and B1 ' M ) K &1 M , B2 ' M ) A K &1 M , B3 ' M ) A K &1 A ) M M

given by equation (11).

Proof.   See Appendix B3.     �

The reduced Riccati equation (13) has dimension smaller than that of the original Riccati

equation (4). 

2.6  The case of nonsingular B2 

The Bi matrices in Theorem 1 are all q x q and only B2 is not symmetric.  B1 is positive

definite and B3 is positive semi-definite.  By Sylvester’s inequality (equation B1.1), 
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B2 (= ) can be of full or less than full rank regardless of whether A has full rank. M ) A K &1 M

(However, if rank (A) < q  then B2 is certainly singular.  Section 3.1 below provides an example.) 

The sequence of reduced Riccati matrices obtained in Theorem 1 can be used with

equations (3), (7), and (10) to obtain the sequence of optimal controls.  However, given{u opt
t }

the transformations employed here there is a more convenient way of calculating the optimal

controls when  has full rank (=q), as in this case the feedback matrix can be shown to be linearB2

in :Mt

THEOREM 2 (LINEAR CALCULATION OF FEEDBACK MATRIX).  If

,  then in the optimal control solution  , therank (B2 ) ' q u opt
t ' &Ft yt&1

feedback matrix  is linear in   for all t # T - 1 :Ft Mt

(14)  ,   Ft ' &W M Mt M ) A % W K A , t # T & 1

with .W ' (C )C )&1 C )K &1 [ I & A )M (M )K &1 A )M )&1 M )K &1 ]

Proof.  See Appendix B4.    �

Thus computation of the sequence  of control feedback matrices involves first{Ft }

computing  from equation (3) with ,  next iterating equationFT ' (C )KT C )&1 C )KT A HT ' KT

(13) to get , and then using equation (14) to obtain the remainder of the feedback matrix{Mt }

sequence.  The value of Theorem 2 is that it allows the feedback matrix sequence to be calculated

linearly and that it may facilitate comparative statics analysis.
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2.7  Further reduction when B2 is singular

We now consider the case in which B2 in equation (13) is singular.  This provides the

opportunity for further reduction of the size of the Riccati matrix:  the n x n  Riccati matrix H has

already been reduced to the q x q Riccati matrix ; if the q x q matrix B2 has rank r < q, we canM

further reduce to an r x r matrix to be denoted .M M(

First put the q x q matrix B2 in standard form:

 .I q
r ' Q B2 S , where I q

r /
Ir 0

0 0
, S '

S1 S2

S3 S4

Here Q and S are invertible q x q matrices and S1 is r x r.   S must be arranged such that S4  is

invertible (which may require a row and column rearrangement as discussed in the footnote of

Appendix B5).    Then we have:  

THEOREM  1* (FURTHER REDUCTION OF ).  If B2 has less than full rank,Mt

 the dimension of the time-varying kernel of the Riccati equation is no

higher than that of , which is r x r  where .   isM(

t r ' rank (B2 ) M(

t

positive definite, with   where Z is defined below, and itsM(&1
t / Z )M&1

t Z

dynamics is described by:

(15)  ,            t # T - 1, M( &1
t&1 ' B (

1 & B2
()

( M( &1
t % B (

3 )&1 B (

2

           ;M(&1
T&1 ' Z ) [B1 & B )

2 (M&1
T % B3 )&1 B2 ]Z
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with B (

1 ' Z ){B1 & B )

2 (B1 % B3 )&1 B2 %B )

2 (B1 % B3 )&1 @

           ,M ( [M ()

(B1 % B3 )&1 M ( ]&1 M ()

(B1 % B3 )&1 B2 } Z

 ,B (

2 ' [M ()

(B1 % B3 )&1 M ( ]&1 M ()

(B1 % B3 )&1 B2 Z

,B (

3 ' [M ()

(B1 % B3 )&1 M ( ]&1 & Z ) B1 Z

where   and       (so  is q x r).Z '

Ir

0q&r , r

M ( '

Ir

& S &1)

4 S )

2

M (

Proof.  In Appendix B5.    �

In equation (15), may or may not be invertible.  (Appendix B5 gives an example inB (

2

which it is not.)  In either case, Theorem 1*  may be combined with equations (3), (7), (10), and

(B5.3) to obtain the sequence of optimal controls based on { }.  If  is not invertible, we canM(

t B (

2

further reduce the dimensionality of the problem by repeatedly applying the reduction process of

Theorem 1* until the reduced analog of  either has zero rank or is invertible.  Therefore theB (

2

effective dimension of the original problem is less than or equal to the rank of .  B2

Note that the proof of Theorem 1* required that the initial condition be stated as of period

T - 1.  Thus in iterating ,  equals , while for t # T - 1   is iterated and then used toHt HT KT M(

t

compute , which in turn is used to compute .  Any further reduction, shifts back one moreMt Ht

period the time of the initial condition for reduced Riccati iteration. 
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There is no counterpart to Theorem 2 for the case in which any reduction beyond that of

Theorem 1 has been applied, because the proof of Theorem 2 rests crucially on invertibility of  B2

and cannot be generalized to rely on invertibility of . B (

2

This section has shown how to reduce the size of the Riccati matrix of optimal control,

thereby simplifying computation of the Riccati iteration and solution and revealing the

underlying structure of the dynamics. To obtain these results we did not require invertibility of

the matrix of control costs or of the transition matrix. 

3.  IMPLICATIONS

3.1  Effective dimension of the system

By Theorem 1*, the upper bound on the effective dimension of the system  (the size of

 or of  if B2 has full rank) is given by the rank of   with M defined inM(

t Mt B2 / M )AK &1 M

equation (11).  This bound may be determined in advance – that is, before theoretical appraisal,

estimation, numerical analysis, or explicit solution of the model.  A general indication of the rank

of  B2 is obtained by repeated application of Sylvester’s inequality (see equation B1.1) to the

definition of  B2  given in Theorem 1.  Recalling that n represents the dimension of the state

vector and k the number of controls, Sylvester’s inequality yields:

(18) .rank (A ) & 2k # rank (B2 ) # min[n & k , rank (A )]

Scalar Riccati dynamics is guaranteed if  n - k (the size of B2) = 1  (or, of course, if rank (A) = 1). 

This case will be discussed in the next sub-section. 

Before we discuss the scalar case, we present a simple example to illustrate the bounds
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implied by equation (18).  Consider a case with  n = 3 ,  k = 1 ,  . C ) ' (0 0 1) , and K ' I3

The 3 x 3 matrix A is unrestricted.  Note that it is always possible, starting from any like-sized

problem with any C, to transform the control and state vectors so that .  Then, B2C ) ' (0 0 1)

= A1 , where  is the 2 x 2  upper left block of A.  Consequently, there is an infinitude of AA1

matrices for which any of the following hold:  (a)   = n - k = 2 , when therank (B2 ) ' rank (A1 )

two 1 x 2 rows of  are independent, with  equaling either three or two;  (b) A1 rank (A )

 =  = 1 , when  has rank one, two, or three and the two 1rank (B2 ) ' rank (A1 ) rank (A ) & 2 k A

x 2 rows of  are dependent;  and (c)   =  = 0 , when allA1 rank (B2 ) ' rank (A1 ) rank (A ) & 2 k

four elements of  are zero so that  must be singular with either rank one or two.A1 A

3.2  Analytical solution when rank (B2 ) # 1 

When   has rank equal to or less than one, the LQC problem allowsB2 ' M ) A K &1 M

scalar-based analytical solution.  When the rank of  is equal to zero because , TheoremB2 B2 ' 0

1 directly shows that  does not evolve.  When the rank of  is equal to one, Theorem 1Mt B2

applies if  (so  has full rank) and Theorem 1* applies if   (so  has lessn&k ' 1 B2 n&k > 1 B2

than full rank).  In what follows we discuss the case , but if the rank of B2 is less thann&k ' 1

full and equals 1, Theorem 1* applies and the results below all continue to hold if we replace the

 by .  Bi B (

i
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THEOREM 3 (ANALYTIC SOLUTION WHEN RANK (B2)= 1).  If rank ( ) = 1 andB2

, the solution for  is:n&k ' 1 Mt

(19) ,            t # T,Mt&1 ' [1 % B3 Mt] / [B1 % (B1 B3 & B 2
2 ) Mt ]

where Theorem 1 defines , which are scalar in this case.  If  rankB1 , B2 , and B3

( ) = 1 and , the solutions are given by replacing  inB2 n&k > 1 B1 , B2 , and B3

equation (19) by the scalars  defined in Theorem 1*. B (

1 , B (

2 , and B (

3

Proof.  Equation (13) implies that  in equation (19) is scalar.   �Mt

Mitchell (2000) finds the solution to a scalar equation of the form of equation (19) as

follows.  Consider first the case of , so that  evolves nonlinearly (unless =B1 B3 & B 2
2 … 0 Mt B2

0).  Let  and hence  ,  where xt ' 1/ (c %Mt ) Mt ' (1 & cxt ) /xt

 and  .  Then usec ' (B1 & B3 % r ) / [2(B1 B3 & B 2
2 ) ] r ' [ (B1 & B3 )2 % 4 (B1 B3 & B 2

2 ) ]1/2

 on both sides of equation (19) to obtain a linear equation of evolution for :Mt ' (1 & cxt ) /xt xt

(20)  ,             t # T,xt&1 '
2(B1 B3 & B 2

2 )

B1 % B3 % r
%

B1 % B3 & r

B1 % B3 % r
xt

with solution

(21) ,            t # T.xt '
B1 B3 & B 2

2

r
% xT &

B1 B3 & B 2
2

r

B1 % B3 & r

B1 % B3 % r

T& t
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Then the solution for  is found by putting equation (21) into .Mt Mt ' (1 & cxt ) /xt

It is also possible for equation (19) to give linear evolution of .  This occurs if and onlyMt

if  .  In this linear case the solution of equation (19) for  is obvious and theB1 B3 & B 2
2 ' 0 Mt

eigenvalue is , which [as Mitchell (2000) shows] may or may not be less than one inB3 /B1

magnitude so the linear case may or may not be stabilizable.

To examine the nature of the scalar dynamics, first derive from equation (19):

(22) .dMt&1 / d Mt ' B 2
2 / [B1 % (B1 B3 & B 2

2 ) Mt ]2 $ 0

Equation (22) allows us to identify three qualitatively distinct cases:

        Case 1:  .  This case is covered equally well by Theorem 1 or Theorem 1*.  EquationB2 ' 0

(19) collapses to  which is constant.  Figure 1(a) shows the dynamics of :  theMt&1 ' 1/B1 Mt

steady state is reached in one iteration.

          Case 2:   and  .  Note that  cannot be negative: we knowB2 … 0 B1 B3 & B 2
2 … 0 B1 B3 & B 2

2

 ,  B3 & B2 B &1
1 B )

2 ' M )AK &1 [K & M (M )K &1 M )&1 M ) ]K &1 A )M ' M )AC (C )KC )&1 C )A )M

where the last equality follows from substituting equation (12) into equation (10) and the result

into equation (8), evaluating the resulting identity at , subtracting K  from both sides, andHt ' K

pre- and post-multiplying both sides by .   Hence,  is positive semi-definite,K &1 B3 & B2 B &1
1 B )

2

and so in this scalar case multiplying this expression by the positive scalar establishesB1

.  Then in this case 2 equation (22) implies that  and B1 B3 & B 2
2 $ 0 dMt&1 / d Mt > 0
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; and as  we have .  Thus, the time path is monotonicd 2Mt&1 / d M2
t < 0 Mt 6 4 dMt&1 / d Mt 6 0

and convergent as displayed in Figure 1(b).

          Case 3:  and . Now by equation (19), B2 … 0 B1 B3 & B 2
2 ' 0 Mt&1 ' (1 /B1 ) % (B3 /B1 ) Mt

so evolution is linear.  This permits the stable case of  shown in Figure 1(c)  (noting thatB3 < B1

both  must be nonnegative given positive definiteB1 (' M )K &1 M ) , and B3 (' M )AK &1 A )M )

K) as well as the unstable case of  , also shown in Figure 1(c).B3 $ B1

We have shown here how to solve the case of  n - k = 1 analytically, which was

heretofore done only for the n = 2,  k = 1 case by Mitchell (2000).  In addition, we have shown

how, due to potential singularities in the transition matrix and its interactions with the cost

matrix, other apparently more complex problems can also be solved analytically if the effective

dimensionality equals 1.

3.3  An example

To illustrate some of the advantages of our reduction technique, consider a simple

extended IS/LM model with nominal wage rigidities (see DeLong and Summers, 1986, for a

similar model):

(23)     (LM)mt & pt ' qt & a it

(24)     (IS)qt ' b & crt

(25)     (Aggregate Supply)qt ' st % dpt

(26)   (Supply Shocks)st ' D st&1 % gt

(27)   (Nominal Interest Rate).it ' rt % (Et pt%1 & pt )
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The government determines the money supply at each time to minimize the discounted value of

deviations in output from target and deviations in inflation from zero:

(28) .V (s ) '
Min

{mt }4s%1
½ Es '4

t's%1
$ t [ (qt& q )2 % h (pt & pt&1)

2]

All variables have their standard definitions and are in log terms, and parameters are positive. 

The random variables have a mean of zero and are i.i.d.  To convert the model to the desired

format of Problem 2 consider that rational expectations implies 

(29) .Et pt%1 ' pt%1 & 0t%1

Clearly  is (perfectly) correlated with  but this does not concern us here.  Simplifying yields0t gt

the following equations of motion:

(30)    ,pt%1 ' & (b /c ) % [(1 /a ) % (1 /c )]qt % [1 % (1 /a ) ]pt & (1 /a)mt % 0t%1

(31)   .qt%1 ' & (db /c ) % [D % (d /a ) % (d /c )]qt % d [1 & D % (1 /a ) ]pt & (d /a)mt % gt%1 % d0t%1

The government objective suggests that we add a constant and a lagged price level variable as

state variables.  Hence:

(32) ,     ,ȳt '

1
pt

pt&1

qt

Ā '

1 0 0 0

& (b /c ) 1 % (1 /a ) 0 (1 /c ) % (1 /a )

0 1 0 0

& (d b /c ) d (1&D) % (d /a ) 0 D % (d /c ) % (d /a )
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,  ,    ,  .C̄ '

0

& (1 /a )

0

& (d /a )

Ḡ '

0

0t

0

gt % d 0t

K̄ '

q 2 0 0 &q

0 h &h 0

0 &h h 0

&q 0 0 1

ūt ' mt&1

For simplicity we set the discount factor $ equal to 1.  

The problem is not in minimal form since two of the four states are not controllable as

can be checked by inspecting the rank of the controllability matrix  which[ C̄ | Ā C̄ | Ā 2
C̄ | Ā 3

C̄]

is two.  Based on Rubio (1971, 194-206), transforming the decision problem to minimal form

requires finding two independent columns from the controllability matrix and calling this 4 x 2

matrix Sc.  Then find a pseudo inverse Vc (2 x 4) so that Vc Sc = I.  The system obtained as:

,  generates the same optimal controls and lossK ' S )

c K̄ Sc , C ' Vc C̄ , A ' Vc Ā Sc , yt ' Vc ȳt

function as the original problem but based on fewer state variables.

We find ,  and easily choose some VcSc ' [ C̄ | Ā C̄ ] '

0 0

1&" (1&") (" % (*)

0 1&"

* (1&") * (1&") (" % (*)

 matrix, we pick ,  such that Vc Sc = I ,Vc '
0 1/ (1&") (" % (* ) / (1&") 0

0 0 1/ (1&") 0

where we have defined  ." ' 1 % (1 /a) , ( ' (1 /c) % (1 /a) , * ' d

This yields

(33)  ,K '
(1&")2 (*2 % h ) (1&")2 [ (*2 % h ) ("%(*) & h ]

(1&")2 [ (*2 % h ) ("%(*) & h ] (1&")2 [ ("%(*)2 (*2 % h ) % h & 2h ("%(*)]
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,   .C '
1

0
, A '

0 0

1 "%(*
yt '

1/ (1&") (" % (* ) / (1&")

0 1/ (1&")

pt

pt&1

Two state variables can be dropped.  In this case the constant and  , which from equation (25)qt

is tied directly to .  In principle, judicious choice of state variables should accomplish apt

minimal formulation without requiring a transformation, but this is not always easy.  The

problem now is clearly minimal since K is full rank implying observability and  so[C | A C ] ' I

clearly full rank implying controllability.

Since there is one control variable, our basic reduction implies that the dimension of the

Riccati kernel governing the dynamics can be reduced from n to n-k, that is, from two to one, so

that explicit solution is possible.  Applying Theorem 1, we first obtain .  Then weM ) ' 0 1

can find

(34)  .B1 '
1 % (*2 /h )

(1&" )2 *2
> 0, B2 '

1

(1&" )2 *2
> 0, B3 '

1

(1&" )2 *2
> 0

Further, .  Hence, we know that Case 2 applies as depicted inB1 B3 & B 2
2 '

1

(1&" )4 *2 h
> 0

Figure 1(b).  In addition, since  is full rank, we can apply Theorem 2:B2

(35) ,Ft '
1

" % (*

)

[ ("&1 % (* ) % Mt /h (1&" )2 ]

The feedback control policy for both of the state variables is linear in the (scalar) Riccati kernel.

The Riccati kernel can be obtained from equation (19) as:
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(36) .Mt&1 ' (1&" )2 h [(1&" )2 *2 % Mt] / [ (1&" )2 (*2 % h ) % Mt ]

Since the nonstabilizable case of Figure 1(c) does not arise in this model, we could solve for the

reciprocal of the steady state value M of the Riccati kernel:

(37) .M&1 ' {1 % [1 % (4h/*2 )] 1/2 }/ [2(1&" )2 h ]

Note that the full algebraic Riccati matrix is not needed.  It can be obtained from equation (37)

via equations (7) and (10) but is quite complicated.  

This example has demonstrated the use of our reduction technique in the context of  a

relatively simple macroeconomic model which can be expressed in terms of four state variables

and one control variable, and has shown how to reduce the Riccati matrix to its scalar kernel and

to express the control feedback matrix linearly in terms of the Riccati kernel.  Additional

examples (including two based on Amman and Neudecker, 1997, and Ljungqvist and Sargent,

2000) and a MATLAB program (see Appendix C) are available from the authors at 

http://www.be.wvu.edu/divecon/econ/balvers/riccatimatlab.htm .

4.  Summary and Conclusion

A procedure has been presented for simplifying and solving LQC models.  The procedure

is automated in MATLAB and can be summarized in the following algorithm:

Step 1. If necessary, transform the LQC problem to fit the structure of equations (2).  Further

transformations can, but need not be, employed to make the problem minimal.

Step 2. First obtain M from equation (11) and subsequently obtain B1 , B2 , B3 , and as givenM&1
T

in Theorem 1.
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Step 3. If  B2  has full rank find  from Theorem 1.  Then skip to Step 8.{Mt }

Step 4. If  B2  does not have full rank, find the S matrix by transforming B2  into standard form

and extract .  (If  does not exist consider footnote 4.)S &1
4 and S2 S &1

4

Step 5. Obtain  as given in Theorem 1*.  If is not invertibleM (, B (

1 , B (

2 , B (

3 , and M(&1
T&1 B (

2

repeat Steps 4 and 5.

Step 6. Find  from Theorem 1*.{M(&1
t }

Step 7. Employ equation (B5.3) to deduce  from .{Mt } {M(&1
t }

Step 8. Substitute  into equation (10) to find and then use equation (7) to generate{Mt } {Pt }

, if  and are needed.  The end matrix  is generated as  , and{Ht } {Pt } {Ht } HT HT ' KT

 is generated from  via equations (7) and (10).HT&1 MT

Step 9. If  B2  has full rank, find the feedback matrix sequence  from equation (3), or, for{Ft }

,  from Theorem 2. The optimal control vector equals . t # T & 1 u opt
t &Ft yt&1

Step 9'. If  B2  is singular, use  from Step 8 and use equation (3) to find the  matrix{Ht } {Ft }

sequence.

This procedure provides a simple calculation (the rank of B2) to establish an upper bound

on the effective dimension of the problem.  It is then possible to find in advance, without

computing the solution, how complicated or simple the dynamics and steady state equations are. 

It is applicable even when the transition matrix, , the control cost matrix, , or the state costĀ R

matrix,  , are singular and in these cases usually reduces the dimensionality of the RiccatiK̄

dynamics.  
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This reduction of the Riccati kernel has several computational and analytical advantages. 

First, in cases where an LQC problem is embedded in a larger dynamic programming model,

such as arises in active learning problems, the curse of dimensionality implies that any reduction

in the size of the Riccati kernel generates substantial computational savings.  Second, current

techniques for generating numerical solutions to the Riccati equation typically work faster when

the dimension of the Riccati dynamics is lower (Note, however, that the matrices are more

compact so the benefits of using any techniques that take advantage of sparsity are reduced).  

Third, it is possible that numerical accuracy is increased because only elementary row and

column operations are needed for solution and because most of the operations are imposed on

lower-dimension matrices.  Patel, Laub, and van Dooren (1994) point out the numerical

advantage of working with smaller-order matrices but also emphasize the numerical instabilities

that arise from roundoff errors.  Accuracy depends accordingly on condition numbers and on a

variety of other factors so is more easily judged on a case-by-case basis.  It remains an issue for

future research to determine for what class of economic problems the particular matrix inversion

required at each iteration involves a sufficiently well conditioned matrix.   Our approach calls for

a few initial transformations, involving inverses of matrices that may or may not be ill-

conditioned, but subsequently performs iterations on smaller-order matrices.

Fourth,  analytical solutions can be obtained if the Riccati kernel is of dimension one (or

zero).  Such analytical solutions aid economic intuition.  Fifth, our approach makes it easier to

impose certain numerical restrictions on the coefficient matrices to construct special cases for

which the Riccati dimension is one.  These solvable cases provide computational advantages by

allowing a check on the numerical accuracy of a particular solution algorithm.  Sixth, the

linearity of the optimal controls in the Riccati kernel may aid in theoretical comparative statics

analysis and may be particularly efficient in policy-improvement solution algorithms (see for
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instance Ljungqvist and Sargent, 2000, p.56). 

Finally, our approach can be applied even when any of the control cost matrix, the state

cost matrix, or the transition matrix are singular.  If the control cost matrix, the state cost matrix,

and the transition matrices are invertible, the solution technique for LQC problems of Binder and

Pesaran (2000) can be compared to ours in that it is applicable to finite horizon models and

requires merely elementary row and column operations.  Their approach, in terms of

computationally demanding operations, requires only the inversion of five matrices (four n x n

and one k x k)  to find the optimal control solution for the first period (for all periods if the

problem is deterministic).  Our approach is more demanding in that it involves inversion of five

matrices (two n x n plus three k x k) as well as T - 1 additional n x n inversions (one for each

additional period) to obtain the optimal control for the first period.  If optimal controls are

calculated for all periods, however, our approach requires no additional inverses, but the Binder

and Pesaran approach for a stochastic model involves T - 1 additional n x n inversions, making it

about as demanding as ours.  The benefits of our approach come into play when there are

singularities in the control cost matrix, the state cost matrix, or the transition matrix.  The Binder

and Pesaran approach does not apply in these cases, whereas our approach becomes more

efficient:  it involves a fixed computational cost of  inversion of five matrices (two n x n plus

three k x k) plus a variable cost of T - 1 additional (n-k) x (n-k) inversions.  If B2 is not invertible,

the dimension of the variable-cost inversions decreases further, although one or two additional

fixed-cost inversions (of dimension less than n) are needed. 
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Appendix A:  Transformation of LQC Problem 1 to LQC Problem 2 

First, augment the state vector with the control vector and redefine variables to suppress

the discount factor.  We can then write Problem 1 as:

 ,V (y 0
s , s ) '

Min

{u 0
t }T

s%1
½(y 0)

T K 0
T y 0

T ) % 'T&1

t's%1
[½(y 0)

t K 0 y 0
t )]

(A1)

subject to    ,y 0
t ' A 0 y 0

t&1 % C 0 u 0
t % G 0 g0

t , t ' s%1 , ... , T , y 0
s given

where ,  ,  ,  and  , y 0
t ' $ ( t&1)/2

ȳt

ūt

u 0
t ' $ ( t&1)/2 ūt g0

t ' $ ( t&1)/2 ḡt K 0 '
K̄ J

J ) R

 ,  ,  ,  .K 0
T '

K̄T JT

J )

T RT

A 0 ' $½ Ā 0

0 0
C 0 ' $½ C̄

I
G 0 ' $½ Ḡ

0

Necessary second-order conditions are that  and   be positive definite.C 0) K 0 C 0 C 0)

T K 0
T C 0

T

  are positive semi definite and we assume that  is a scalar multiple of .K 0 and K 0
T K 0

T K 0

Dropping the stochastic elements because of the well-known property of certainty

equivalence, implies:

 ,V (ys , s ) '
Min

{ut }
T
s%1

½( y )

T KT yT ) % 'T&1

t's%1
[½ ( y )

t K yt )]

(A2)

subject to    ,yt ' A yt&1 % C ut , t ' s%1 , ... , T , ys given
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Thus, the LQC problem (A2) determines  which is sufficient to obtain the valueut

function. However, to determine the optimal control solution for the original Problem 1, having

solved for   , the relevant optimal control  can be obtained from:ut ' &Ft yt&1 ūt

(A3)  ,ūt ' & $& ( t&1)/2 Ft yt&1

(A4)   .yt ' (A&CFt ) yt&1 % $ t /2 Ḡ

0
ḡt

Appendix B.1:  Proof of Lemma 1 

From equations (9) it is straightforward to relate  and  to .  The firstP3 t (' P )

2 t ) P4 t P1 t

equation in (9) gives  .  Transpose (to produce ) and substitute into theP2t ' & P1 t C1 C &1
2 P3 t

second equation (noting the symmetry of  as follows from the symmetry of ) which yields P1 t Pt

.  Then factor out the M and  matrices to produce equation (10). P4 t ' (C )

2 )&1C )

1 P1 t C1 C &1
2 M )

To show that  is invertible, note from equation (8) that  can be written as the productMt Pt

, where the matrix in brackets is idempotent with trace equal toHt [In & C (C )Ht C )&1 C ) Ht ]

 and thus rank n - k = q.  Hence, since  has full rank n,  has rank q bytrace ( In ) & trace ( Ik ) Ht Pt

Sylvester’s inequality: 

(B1.1)  ,   rank (X1 ) % rank (X2 ) & n # rank (X1 X2 ) # min[ rank(X1 ) , rank(X2 )]

where n is the number of rows in X2 . 

Equation (10) then implies that rank ( ) $ q, and since  has dimension q it must haveMt Mt

full rank.   �
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Appendix B2:  Proof of Lemma 2 

Post-multiply equation (8) by  and then use the transpose of equation (9).  This yieldsH &1
t Pt

 ,  so that , interestingly,  is seen to be a generalized inverse of .  Next  usePt ' Pt H &1
t Pt H &1

t Pt

equation (10) in the right-hand side of this equation and pre-multiply by  and post-Iq 0

multiply by  to pick out the upper left block  of the matrix, yielding:Iq 0 ) P1 t / Mt

  (B2.1) ,            t # T.Mt ' Iq 0 M Mt M ) H &1
t M Mt M )

Iq

0

Now consider that ,  and post-multiply equation (13) by , toIq 0 M ' Iq M&1
t (M ) H &1

t M )&1

obtain equation (12).  Positive definiteness follows directly from equation (12) given that  isHt

positive definite.   �

Appendix B3:  Proof of Theorem 1 

Substitute  from Lemma 1 into equation (7):Pt ' M Mt M )

(B3.1) ,            t # T.Ht&1 ' K % A ) M Mt M ) A

A standard inversion identity (used later on further occasions) states that given the matrices X1 ,

X2 , X3 , and X4 , with X1 and X4 invertible, we have [Söderström (1994), pp. 156-7]:

(B3.2) ( X1 % X2 X &1
4 X3 )&1 ' X &1

1 & X &1
1 X2 ( X4 % X3 X &1

1 X2 )&1 X3 X &1
1

Applying the identity to (B3.1) gives:
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(B3.3) .H &1
t&1 ' K &1 & K &1 A ) M (M&1

t % M ) A K &1 A ) M )&1 M ) A K &1

Post-multiplying by M and pre-multiplying by  yields after applying Lemma 2:M )

(B3.4) ,M&1
t&1 ' M ) K &1 M & M ) K &1 A ) M ( M&1

t % M ) A K &1 A ) M)&1 M ) A K &1 M

which is equation (13).   follows from equation (12) using the fact thatM&1
T ' M )K &1

T M

 from (4).  �HT ' KT

Appendix B4:   Proof of Theorem 2

From equations (3) and (8) we obtain

(B4.1)  ,      t # T ,CFt ' ( In & H &1
t Pt ) A ' ( In & H &1

t M Mt M ) ) A

where the second equality follows from Lemma 1.  To obtain the term  appearing on theH &1
t M

right-hand side of equation (B4.1), we first use equation (B3.3) and the definitions in Theorem 1:

(B4.2) ,       t # T .H &1
t&1 M ' K &1 M & K &1 A ) M ( M&1

t % B3 )&1 B2

Use the solution of equation (13) for in equation (B4.2):( M&1
t % B3 )&1

(B4.3) ,      t # T .H &1
t&1 M ' K &1 M & (K &1 A ) M ) B &1)

2 ( B1 & M&1
t&1 )

Update equation (B4.3) by one period (making it valid for t # T - 1) and substitute into the right



6 If S4 is not invertible we can always rearrange the rows of S by pre-multiplying by some permutation
matrix J such that  with  invertible.  In this case transform all Bi to obtain .  In order for equationŜ / J S Ŝ4 J ) Bi J

(14) to continue to hold we must also transform   to   and in order for the procedure to work we mustM&1
t J ) M&1

t J

also set .  Then we can proceed as above.  We then obtain  in equation (B5.3) but canQ̂ / Q J ) J ) (M&1
t & B1 ) J

recover  by inverting the known J matrix.M&1
t
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side of (B4.1).  Pre-multiplying the left and right sides of equation (B4.1) by  yields(C )C )&1 C )

equation (14).   �

Appendix B5:   Proof of Theorem 1*

Consider a generalized inverse of B2 given as:  .  It is easy to check that  isB I
2 ' S I q

r Q B I
2

indeed a generalized inverse of  since  and since  is anB2 B2 B I
2 B2 ' Q &1 ( I q

r )3 S &1 ' B2 I q
r

idempotent matrix.  Define  .  Then by design   and1 ' ( Iq& B I
2 B2 ) S

0r , q&r

Iq&r

B2 1 ' 0q , q&r

straightforward multiplication shows that:

 (B5.1)    .1 ' Iq& S ( I q
r )2 S &1 S

0r , q&r

Iq& r

' S Iq& I q
r

0r , q&r

Iq&r

'

S2

S4

Since  it follows from equation (14) updated one period that: B2 1 ' 0

(B5.2)   , .  M&1
t & B1 1 ' M&1

t & B1

S2

S4

' 0q , q&r t # T & 1

Partition  and B1 according to S  and extract the r x r upper left block of   as  . M&1
t M&1

t Z ) M&1
t Z

Take S4  as invertible6 and solve equations (B5.2) similarly to equation (9).  This yields:
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(B5.3)     ,      t # T - 1,M&1
t & B1 ' M ( ( M(&1

t & B11 ) M ()

, M ( '

Ir

& S &1)

4 S )

2

where   represents the upper left block of  and M(&1
t / Z )M&1

t Z M&1
t B11 / Z ) B1 Z

represents the upper left block of  .  As and  are positive definite, so are  and .B1 M&1
t B1 M(&1

t B11

To obtain the dynamics of ,  post-multiply equation (14) by Z and pre-M(&1
t / Z ) M&1

t Z

multiply by , and use equation (B5.3) on the right side to produce:Z )

(B5.4)   ,     t # T - 1.M( &1
t&1 & B11 ' & Z ) B )

2 [M ( (M( &1
t & B11 ) M ()

% (B1 % B3 ) ]&1 B2 Z

To manipulate equation (B5.4), consider that the term in brackets is positive definite (as it equals

the sum of a positive definite matrix and a positive semi-definite matrix ).  Further, M&1
t B3 B2 Z

has full column rank r :   .  Thus  ,B2 Z ' Q &1 I q
r S &1 Z , S &1 /

E1 E2

E3 E4

I q
r S &1 Z '

E1

0

where , so .  From footnote 4 we can assumerank
E1

0
' rank ( E1 ) rank( B2 Z ) ' rank ( E1 )

without loss of generality that  has full rank q - r.  We know that S4 E1 ' (S1 & S2 S &1
4 S3 )&1

[Anderson and Moore (1990), p. 349] because  exists and becauseS &1
4

  so  [Söderström (1994), p. 162].  Thus|S4 | · | S1 & S2 S &1
4 S3 | ' |S | … 0 | S1 & S2 S &1

4 S3 | … 0

 has full rank r, so that  has full column rank.  This fact, together with the positiveE1 B2 Z

definiteness of the term in brackets, establishes that the left-hand side of equation (B5.4) is
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negative definite and thus  is invertible.  We can now use the inversion identityM( &1
t & B11

(B3.2) to rewrite the term in brackets, since the relevant inverses exist:

(B5.5)   M( &1
t&1 ' Z ) [B1 & B )

2 (B1 % B3 )&1 B2 ]Z % Z ) B )

2 (B1 % B3 )&1 M ( @

       ,      t # T - 1.[M ()

(B1 % B3 )&1 M ( % (M( &1
t & B11 )&1 ]&1 M ()

(B1 % B3 )&1 B2 Z

Again use the inversion identity to reformulate the second expression in brackets:

(B5.6)  M( &1
t&1 ' Z ) [B1 & B )

2 (B1 % B3 )&1 B2 ]Z % Z ) B )

2 (B1 % B3 )&1 M ( [M ()

(B1 % B3 )&1 M ( ]&1

            @ & [M ()

(B1 % B3 )&1 M ( ]&1 { M( &1
t & Z )B1 Z % [M ()

(B1 % B3 )&1 M ( ]&1 }&1

  ,      t # T - 1.[M ()

(B1 % B3 )&1 M ( ]&1 M ()

(B1 % B3 )&1 B2 Z

Note that the inverse of the term in small braces exists by the invertibility of the second term in

brackets in equation (B5.5), since, when  exists, so does  with[X % Y &1 ]&1 [Y % X &1 ]&1

 and  both invertible.  Y / M( &1
t & B11 X / M ()

(B1 % B3 )&1 M (

Equation (B5.6) directly yields equation (15) in Theorem 1*.   The initial condition M( &1
T&1

is obtained from using equation (14) in .    �M(&1
T&1 / Z ) M&1

T&1 Z

An example in which  is singular (after a single application of the reduction inB (

2

Theorem 1*) is as follows: 

 .K ' I4 , C '

02,2

I2

, A '

A1 A2

A3 A4

, A1 '
1 2

&0.5 &1
, A2 '

0 0

0 0
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Then  and so rank ( ) = 1 and hence is a scalar.  ThenB2 ' A1 B2 B (

2

,  so .  Therefore   soQ '
1 0

&2 1
, S '

1 &0.5

0 &1
M ( '

1

&0.5
M ()

(B1 % B3 )&1 B2 Z ' 0

that ; hence rank  < 1.B (

2 ' 0 B (

2 ' 0

Appendix C:  MATLAB Program and Examples 

The programs and examples are available from

http://www.be.wvu.edu/divecon/econ/balvers/riccatimatlab.htm .

A MATLAB program that follows exactly the approach in this paper is RedFunction.m. 

A more practical program RedMainFin.m includes also the transformations to convert to

minimal order and allows for a singular state cost matrix.  This program calls a simple Riccati

iteration procedure to generate the feedback matrix and Riccati kernel for each point in finite

time. Each of the transformations can also be called separately as functions: RedCon.m,

RedObs.m, RedK.m, RedA.m.  Finally, the program RedMainInf.m  uses our reduction but

then solves for the algebraic Riccati and feedback matrices (using either the OLRP.m program

of Ljungqvist and Sargent or the DARE.m program from MATLAB’s control toolbox). 

The programs are designed to compare the results from alternative approaches, but can

easily be amended.  Various examples are available (three examples developed for this paper,

two examples from Amman and Neudecker, 1997, and two examples from Ljungqvist and

Sargent, 2000).
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Reply to Associate Editor

1. We have focused the exposition primarily on finite horizon LQC problems, although in our
framework infinite horizon problems follow naturally from these.  We illustrate our solution
algorithm using an interesting rational expectations model, which is most naturally specified with
an infinite horizon.

MATLAB code for the transformation of any problem with constant coefficients to our
canonical form, and for the Riccati reduction of our paper, is available from our website as
cited in the paper.

2. We do not report results from numerical experiments on the speed of the algorithm, and we
have eliminated our previous misleading references to algorithmic speed.  The point about
speed of implementation is simply that any numerical solution technique that could be applied to
the original Riccati equation can be implemented faster on our Riccati kernel of reduced size.

3. Our MATLAB program (REDMAINFIN.M) allows one to start with any positive semi-definite
K matrix.  However, in the text, to avoid substantial further complications as a result of working
with generalized inverses, we maintain the assumption of an invertible state cost matrix K. 
Footnote 4 on p. 6 discussed this issue. This footnote also clarifies the assumptions on the C
matrix.

4. Beyond minimality, which we discuss more carefully in the present version, the literature
contains no work on Riccati matrix reduction beyond Mitchell (JEDC, 2000), which was
already cited in the previous version.

5. As you requested we start with a formulation of the problem that incorporates control costs
explicitly in the objective.

6. We have tried to write the current version as tightly as possible.  In particular, we have
removed two corollaries, two theorems, and the discussion of Kalman filtering.

7. The current version keeps the use of control theory jargon to a minimum.



Reply to Referees

We thank all three referees for their thoughtful and detailed comments.  Based on these comments we
have made the following revisions.

Referee I

1. We have clarified in section 2.3 that our procedure generally gives a net reduction in the size of
the Riccati matrix.

2/3. We do not report results from numerical experiments on the speed of the algorithm, and we
have eliminated our previous misleading references to algorithmic speed.  The point about
speed of implementation is simply that any numerical solution technique that could be applied to
the original Riccati equation can be implemented faster on our Riccati kernel of reduced size. 
We acknowledge the issue of sparsity on p.23.

4. We have replaced our unnecessarily restrictive assumptions on the matrices with the least
restrictive assumptions possible. Our MATLAB program (REDMAINFIN.M) allows one to start
with any positive semi-definite K matrix.  However, in the text, to avoid substantial
complications to an already complex derivation as a result of working with generalized inverses,
we maintain the assumption of an invertible state cost matrix K.  Footnote 4 on p. 6 discussed
this issue. This footnote also clarifies the assumptions on the C matrix.

5. Beyond minimality, which we discuss more carefully in the present version, the literature
contains no work on Riccati matrix reduction beyond Mitchell (JEDC, 2000), which was
already cited in the previous version.  Since the focus of the paper is on identifying the kernel of
the dynamic structure of Riccati equations, and not on numerical analysis, we have not
extensively cited the literature on the latter although we refer to Patel, Verhagen, and van
Dooren (1994) on p. 23.

6. For finite horizon problems which must be solved iteratively our technique reduces the
dimension of the recursions.  For infinite horizon problems our technique reduces the size of the
algebraic Riccati equation, whatever solution technique may be chosen.

More Detailed Comments

1. While we appreciate the desire for brevity in the choice of references, we have retained the
indicated references because we feel that these references motivate the discussion of LQC
problems from an economics perspective.

2. We have deleted the indicated sentence.



3. In p.1 paragraph 2 we have clarified the benefits of the paper.

4. We have clarified the indicated passage.

5. We have dropped the adjective “simple.”

6. We have eliminated the unclear run-on sentence.

7. We have deleted the mention of alternative terminology in the Kalman filtering context, because
we have almost completely eliminated mention of this context from the paper.

8. We now define all notation before stating its properties.

9/11. Our paper replaces the old equation (3) with a reduced version which in the infinite horizon
case can be solved with any numerically stable approach.

10. We now show in Appendix A how to convert a general problem formulation with invertible K
matrix into our canonical form. Our MATLAB program does so for singular K matrix as well.

12. Both the inversion identity and Sylvester’s inequality are no longer in footnotes and are stated
explicitly in the Appendix.

13. Our procedure certainly does not assume that A is nonsingular, and indeed the extent of the
reduction is generally greater when A is singular.

14/15/16.   Corollaries 1.1 and 1.2 have been removed from the paper, but we have chosen to 
      retain Theorem 2 because it helps to illuminate the structure of the problem.

17. We have clarified in the introduction what the purpose of the paper is.

18. We have deleted Theorems 3 and 3*.

19. We have substantially shortened section 3.

20. We have removed the mention of eigenvalue computations or Jordan or Schur decompositions.

21. We have removed this paragraph.



Referee II

Overall assessment

We point out that the main contribution of the paper does not lie in the speed of iteration in the reduced
Riccati equation.  See point 2/3 in the reply to Referee 1.  We discuss computational and non-
computational advantages on pp. 22-24, where we also compare our approach to that of Binder and
Pesaran (2000).

Detailed comments

1. Our formulation with K constant prior to time T, but possibly differing at T, is a very widely
used formulation.  In addition, while our approach does not preclude putting a high cost on
deviations of the final state vector, our approach with no end point restriction is very widely
used.

2. Footnote 4 on p.6 points out that the case in which C has less than full column rank is
uninteresting  because there are superfluous controls which can be eliminated without affecting
the optimal value of the loss function.  This is further necessary for second-order conditions to
hold.

3. We have indicated that the main point of the paper is to explore the nature of the kernel of the
Riccati dynamics and not to explore the numerical calculation expense.  (See pp. 22-24 in
particular).

4. We have removed the section on Kalman filtering.

5. We no longer refer to numerical instabilities, which are not the point of the paper.



Referee III

1. We have emphasized that our reduction applies when the system is minimal.  See in particular
pp.4 and 7, and the example.  In addition, our MATLAB program allows the problem to be
converted to minimal form.

2. While we have retained our previous notation, we have adapted the formulation with explicit
control costs.

3. We remove the inadvertent implication that the standard solution originated with Chow.

4. We discuss that our approach can reduce even a minimal problem and provide an explicit
example in the text and several other examples with our MATLAB program.  However, we do
not explicitly impose those restrictions in the text as these restrictions would not affect the
theoretical analysis and can easily be assumed by the reader without affecting the basic results. 
See p.7.

5. We show in Appendix A how to convert a general problem formulation with invertible K matrix
into our canonical form. Our MATLAB program does so for singular K matrix as well.  We
discuss in footnote 4 the cost of assuming invertible K in the text in terms of complicating an
already difficult paper by working with generalized inverses. 

6. We have removed the section on Kalman filtering as you suggest.

7. In our conclusion we raise but do not resolve the issue of whether the matrices to be inverted
are well conditioned.


