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Abstract

Evidence of mean reversion in U.S. stock prices during the post-World War II era is
mixed. I find that using the standard portfolio formation method to construct size-sorted
portfolios is inadequate for detecting mean reversion. Using alternative portfolio forma-
tion methods and additional cross-sectional power gained from size-sorted portfolios dur-
ing the period 1963 to 1998, I find strong evidence of mean reversion in portfolio prices.
My findings imply a significantly positive speed of reversion with a half-life of approxi-
mately three and a half years. Parametric contrarian investment strategies that exploit
mean reversion outperform buy-and-hold and standard contrarian strategies.
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1. Introduction

Findings of reversion in stock prices towards some fundamental value have been present
in the finance literature for over a decade.1 Fama and French (1988) employ a time series
approach to detect the presence of a transitory component in stock prices. Specifically,
they regress monthly stock returns on lagged multi-year returns. Using industry and size-
sorted portfolio (based on total market capitalization) data, Fama and French find that
25-45 percent of the variation of 3- to 5-year stock returns is predictable from past re-
turns. More recently however, support for such mean reversion has been strongly criti-
cized. Jegadeesh (1991), Gangopadhyay (1996), and Gangopadhyay and Reinganum
(1996) find that seasonal effects influenced previous conclusions in support of mean re-
version.2 Jegadeesh also finds that there is little evidence of mean reversion in the post-
World War II period. Similarly, Kim, Nelson, and Startz (1991) and McQueen (1992)
confirm this result, and suggest that relying on standard econometric techniques, i.e.,
OLS, places an inordinate level of importance on the relatively high volatility during the
pre-war era and thus exaggerates the overall level of mean reversion.3 Such difficulties
only stress the problems associated with detecting a mean reverting component in asset
prices.

This paper examines the difficulties associated with using size-sorted portfolios to
detect the presence of mean reversion. Many of the studies discussed above have evalu-
ated mean reversion using size-ranked portfolios and have failed to detect the presence of
mean reversion.4 The motivation for the use of portfolios is to reduce measurement error
and other noise, as well as, maintaining enough dispersion in returns to increase the
power of tests for mean reversion. As Cochrane (2001, p. 530) argues, sorting by market
capitalization is as good as sorting by beta or any other criterion as long as the above two
conditions are met. Using a panel model developed by Balvers, Wu, and Gilliland (2000),
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I find significant evidence of mean reversion in portfolio prices while showing that the
method of sorting stocks on the basis of market capitalization used in past studies is in-
adequate when testing for the existence of mean reversion. If stock prices return to some
fundamental level after experiencing a temporary shock, i.e., mean reversion exists, then
it should be possible for investors to increase their expected return by shorting those
stocks with the highest return in the previous period and purchasing those stocks with the
lowest returns in the previous period. I explore the economic importance of the mean re-
version results by examining various investment strategies.

The remainder of this paper is organized as follows. The following section de-
scribes the methodology and discusses the inherent problems associated with analyzing
mean reversion. Section 3 presents the empirical results. Section 4 provides confirmation
of earlier findings by examining the effectiveness of ‘parametric contrarian investment
strategies’. The paper ends with a brief summary of conclusions.

2. Methodology: Model

Following Balvers, Wu, and Gilliland (2000), the hypothesis of mean reversion in stock
prices can be motivated with the following model:5
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Equation (1) is similar to the standard augmented Dickey-Fuller (ADF) test for a unit root
(Dickey and Fuller, 1981). Specifically, it allows us to test for a unit root in the difference
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. � measures the speed of reversion, which is assumed equal

across portfolios.6 Specifically, if 0 < �<1, deviations in price from its fundamental value
are transitory and will be reversed over time. Traditional tests of mean reversion test the
hypothesis that � = 0. Acceptance of the null implies that the price of portfolio i is an inte-
grated process of order one, I(1). If �i = 1 then deviations in price are fully reversed in the
subsequent period.

The rationale behind this panel framework is simple. As many researchers have
noted in the past, the fundamental values of share prices are unobserved and therefore dif-
ficult to define, requiring researchers to derive proxies for the fundamental value, i.e.,
earnings and dividend-to-price ratios.7 The use of such proxies is inherently flawed and
creates a potential loss of information that could assist in distinguishing between tempo-
rary and permanent components of asset prices. For example, expected deviations in
earnings or dividends per share will likely influence the fundamental value during the pe-
riod in which expectations change; however, the proxy will only reflect such changes in
later periods. As a result of such latency problems, estimates of � would be inconsistent
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and possess a downward bias. The use of the panel approach discussed above enables one
to examine mean reversion in portfolios relative to a benchmark index under the assump-
tion that differences in portfolio prices are stationary.

Selecting the benchmark index could lead to possible data-snooping biases. In an
effort to avoid such problems, I select the most obvious index to represent the benchmark
index. Specifically, since the primary data used in this analysis comes from the New York
and American stock exchanges, I select the equal-weighted NYSE/AMEX index. I assign
the optimal lag length, k, in accordance with the Akaike information criterion (1973) and
Schwartz-Bayesian criterion (1978), hereafter referred to as AIC and SBC, respectively.

2.1 Power and Test Statistics

Additional reasons for using the panel approach discussed above include the following:
First, as Cochrane (1991) and DeJong, Nankervis, Savin, and Whiteman (1992) have
shown, standard unit root tests possess low power in small samples. As a result, many re-
searchers have recommended the use of panel data over single equation alternatives in or-
der to gain statistical power. For example, Levin and Lin (1993) argue that, even for
relatively small samples (i.e., 10 cross-sections and 25 observations), “the panel frame-
work can provide dramatic improvements in power compared to performing a standard
unit root test for each individual time series” (p. 26).8 Such conclusions are directly ap-
plicable to this analysis since conducting tests for mean reversion over non-overlapping
return intervals leads to a limited number of observations. Using a simulation approach,
Creel and Farrell (1996) maintain that Zellner’s (1962) seemingly unrelated regression
(SUR) method may be substantially more efficient than ordinary least squares (OLS) esti-
mation. Accordingly, I use the SUR approach in order to account for heteroskedasticity
and contemporaneous correlation across size-ranked portfolios.

The test statistics used to evaluate the null hypothesis of no mean reversion, � = 0,

are t se� � / ( � )� � and z T� �� � , where T is the sample size,�� is the estimate of �, and se( � )� is

the standard error of ��. The above test statistics are not characterized by conventional dis-
tributions. For this reason, the appropriate critical values are determined using Monte
Carlo simulations in an attempt to avoid reliance upon asymptotic distributions (see Bal-
vers et al., for details).

2.2 Data

The basic data were obtained from the Center for the Research in Security Prices (CRSP)
and consist of the monthly returns for all stocks traded on the New York and American
stock exchanges. After portfolios are constructed, monthly portfolio returns are calcu-
lated by equally weighting the individual security returns. Monthly portfolio returns are
then transformed into continuously compounded non-overlapping returns with return ho-
rizons of 1 and 2 years.

The sample period used in estimation is the 1963 to 1998 period (except for PFM
3). 1963 is the first full year of data that CRSP provides for both the NYSE and AMEX
exchanges. Thus, beginning the sample period in 1963 incorporates all available data on
the American stock exchange. Coincidentally, using 1963 as the starting point maximizes
the total number of observable data, i.e., the total number of available time-series multi-
plied by the total number of available cross-sections.
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The fact that stocks delist during the sample period used in the above portfolio for-
mation methods is unavoidable. Although commonly practiced in the finance literature,
simply dropping firms from their respective portfolios once they delist does not accu-
rately reflect the true returns that accrue to investors. In accordance with Shumway
(1997), I attempt to account for such survivorship issues (see Appendix for details).9

2.3 Portfolio Formation Methods

Standard methods of portfolio formation require that securities be placed into ten (decile)
portfolios after ranking them at the end of the previous year based upon their total market
capitalization, where market capitalization is defined by multiplying the number of shares
outstanding by the price per share. Thus, portfolios are rebalanced on an annual basis.
The concept of updating portfolios on a yearly basis is not inconsequential.

Fama and French (1988) suggest, but do not explore, the possibility that temporary
price swings and their subsequent reversals may be missed when using portfolios that are
rebalanced on a year-to-year basis. The problem with this method of portfolio formation,
with respect to tests for mean reversion, is that those stocks that are most likely to exhibit
a mean reverting price component are precisely those stocks that are most likely to move
between deciles, thus decreasing the likelihood of detecting mean reversion. Hence, peri-
odically updating portfolios based on end-of-period firm specific factors, such as market
capitalization, may impart a tendency to underestimate, or reject outright, the existence of
mean reversion.

To test this conjecture, I use the following portfolio formation methods (PFM)
(summarized in Table 1). PFM 1: for comparison purposes I use the standard approach to
portfolio formation described above. Stocks are placed into their respective deciles after
ranking them at the end of the previous year based upon their total market capitalization.
PFM 2: stocks are ranked on the basis of their August through December 1962 total mar-
ket capitalization level and assigned this ranking for all subsequent periods, i.e., stocks
are ranked on the basis of their average market capitalization level through this period.
Hence, stocks are required to be actively traded during the August to December 1962 pe-
riod in order to be included in their respective portfolios. For comparability, PFM 1 also
consists of stocks that are actively traded during this period. Of the available stocks,
1,981 stocks qualify for this selection process. Hence, PFM 1 is directly comparable to
PFM 2 since both methods consist of the same ‘pool’ of available stocks. By implication,
the period used in estimation is 1963 to 1998.

It is important to note that the above portfolio selection method is not the only port-
folio selection method that is available. Any portfolio formation method that does not re-
quire updating is a suitable candidate. For completeness, I adopt additional portfolio
formation methods. PFM 3: stocks are ranked on the basis of their 1963 through 1967 to-
tal market capitalization level and assigned this ranking for all subsequent periods (1,526
stocks qualify for portfolio selection).10 Accordingly, the sample period used in estima-
tion is reduced to 1968 through 1998. PFM 4: using stocks that continually trade over the
1963 to 1998 period allows us to rank firms based on the average of their year-end mar-
ket capitalization ranking. Of the available stocks, 358 qualify for this selection process.
PFM 4 resembles both types of portfolio formation methods mentioned above. That is,
stocks are ranked in a similar manner to that used in PFM 1 but are then assigned one
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ranking for the whole period based on the average of their yearly ranking. Hence, as in
PFM 2 and 3, portfolios are not updated on a periodic basis.

3. Empirical Results

The results from the various portfolio formation methods are presented in Table 2. What
is striking about the results is the difference in the point estimates of �for the alternative
portfolio formation methods. Many of these differences are quite substantial. For exam-
ple, Portfolio Formation Method 2 (PFM 2) yields point estimates of 0.194 and 0.516 for
the 12- and 24-month non-overlapping return horizons, respectively, while the corre-
sponding results for PFM 1 indicate point estimates of �only 0.072 and 0.141. Using port-
folios that are not updated on a yearly basis provides point estimates of � that are as much
as two hundred and fifty percent greater than those for portfolios that are updated periodi-
cally. While unable to detect mean reversion during this period using portfolios that are
updated yearly (PFM 1), the results using portfolios that are not updated provide conclu-
sive evidence of mean reversion in portfolio prices.

It is well known that � is biased upwards in small samples. Accordingly, I correct
for the small-sample bias under the alternative using Monte Carlo simulations (see Bal-
vers et al.,(2000)). Even after correcting for the upward bias in the estimate of �, the
median-unbiased estimates provide strong confirmation of mean reversion in asset prices.
The median-unbiased estimates of �are quite large and thus economically important. Us-
ing PFM 2 and a return horizon of 24 months, the implied half-life, the amount of time re-
quired for an asset’s price to revert half-way toward its fundamental value after a
one-time shock, of the median-unbiased estimate is three and a half years.11 Similarly,
using PFM 3 and a return horizon of 24 months, the implied half-life is just over three
years.

The results presented in Table 2 confirm the idea that using size-sorted portfolios
that are updated periodically could potentially bias attempts to detect mean reversion and
suggests that past researchers (for example, Jegadeesh (1991), Gangopadhyay (1996),
and Gangopadhyay and Reinganum (1996)) have incorrectly concluded that mean rever-
sion does not exist. What makes these results particularly interesting is that the period un-
der analysis is the post-World War II era. That is, Jegadeesh (1991) and others argue that
mean reversion is exclusively a pre-World War II phenomenon. Using only post-war pe-
riod data, I am able to detect the presence of mean reversion in portfolio prices. In addi-
tion to the alternative portfolio formation methods used, possible explanations for this
incongruity include the increased power associated with using a panel framework and the
increased information from avoiding the necessarily incorrect derivation of a proxy for
the fundamental value.

4. Economic Significance

In the preceding sections I show that size-sorted portfolios possess a mean reverting price
component. Accordingly, in an attempt to increase expected returns, it should be possible
to construct investment strategies that exploit this information. In this section I explore
the economic importance of the mean reversion results by examining various portfolio
switching strategies.
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4.1 Rolling Regression – Parametric Contrarian Investment Strategy

In order to evaluate the mean reversion results discussed earlier, I use the following port-
folio switching strategy. Initially, I estimate equation (1) from the beginning of the sam-
ple up to a point t0. After estimating the system, I use the parameter estimates and
observations up to time t0 to calculate the expected return for each portfolio at time t0 + 1.
The portfolio with the highest expected return is then purchased and held during the fol-
lowing period. The system is again estimated, however, the sample period is updated by
one additional observation. Therefore, the system is estimated from the beginning of the
sample period up to a point t0 + 1. Again, the parameter estimates are used to calculate
the expected return for each portfolio at time t0 + 2. The portfolio is then switched to the
decile with the highest expected return over this period. This process (Rolling Regres-
sion) is repeated until there are no more observations remaining. Completing this process
creates a portfolio with the highest expected return (hereafter referred to as the “Max”
portfolio).

Similarly, I create a “Min” portfolio that consists of deciles with the lowest ex-
pected return. Returns from a strategy that involves purchasing the “Max” portfolio and
shorting the “Min” portfolio represent excess returns from the zero net investment per
dollar received in shorting the “Min” portfolio. This zero net portfolio will be referred to
as the “Max-Min” portfolio. Balvers, Wu, and Gilliland (2000) suggest that this strategy
is the equivalent of the “parametric version of the contrarian strategy devised by DeBondt
and Thaler (1985)” (p. 761), and refer to it as the ‘parametric contrarian’ investment strat-
egy.

I use the portfolio switching strategy discussed above for the various formation
methods used in the previous section (PFM 1-4). Hence, I am able to analyze whether the
economic significance of the mean reversion results, and any excess returns that may re-
sult, are sensitive to using portfolios that are updated on a periodic basis (PFM 1). One
would expect PFM 2 – 4 to outperform PFM 1 given that the null hypothesis of no mean
reversion could not be rejected using the latter method.

In order to provide a sufficient number of observations to ensure that the covari-
ance matrix is positive definite, and thus invertible, the return horizon selected for this
analysis is twelve months. To ensure that there are enough observations to estimate the
first set of parameters t0 is set at 1/3 the sample for each of the portfolio methods ex-
plored. Hence, all forecasts begin in 1975.

4.2 Alternative Investment Strategies

For purposes of comparison, I implement a Buy-and-Hold strategy. I calculate the geo-
metric average buy-and-hold returns from holding the equal-weighted index, as well as
an equal-weighted portfolio that consists of each of the ten available deciles. This allows
us to compare the findings from the “parametric contrarian” strategy to commonly used
benchmarks.

If prices do not possess a mean reverting component then it follows that a strategy
that simply selects those portfolios that have performed well in the past should outper-
form the portfolio switching strategy outlined above. This implies that prices follow a
random-walk-with-drift. In order to determine the validity of such a conjecture, I adapt
the rolling regression technique described above by restricting � = 0. I refer to this new
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strategy as the Random Walk (with drift) strategy. Hence, if the Rolling Regression strat-
egy outperforms the Random Walk strategy then we can conclude that prices do possess a
mean reverting component.

For further comparison, I implement the standard Contrarian strategy developed
by DeBondt and Thaler. Specifically, portfolios are ranked on the basis of their average
three-year return. The portfolio with the lowest return indicates a ‘loser’ portfolio, while
the portfolio with the highest return designates a ‘winner’ portfolio. Following DeBondt
and Thaler, ‘losers’ are expected to yield the highest returns in the following three years
after portfolio formation, while the opposite is true for ‘winner’ portfolios. Hence, the
“Max” portfolio for this strategy represents the portfolio with the highest expected re-
turns (‘losers’) and the “Min” portfolio represents the portfolio with the lowest expected
returns (“winners”).

4.3 Results

The results for the various investment strategies are presented in Table 3. The Rolling Re-
gression investment strategy uniformly outperforms all other investment strategies. For
example, using PFM 4, the Rolling Regression strategy provides an average annual return
of 19.3%, while the Buy-and-Hold strategy for the equal-weighted index only provides an
annual return of 15.5%. Evidence against mean reversion implies that the mean return us-
ing the Rolling Regression method is less than or equal to the mean return of buying and
holding the equal-weighted index, i.e., R Rewmax � . Testing this hypothesis yields a t-
statistic of 2.36, which is significant at the 5% level. Even more convincing is the fact that
the Rolling Regression strategy produces a higher return than the, ex post, highest return
for any decile over this period.12 Furthermore, the zero-net investment strategy yields
significant excess returns of 9.1% (p-value 0.000). Similar results are found using PFM’s
2 and 3. Further evidence of mean reversion exists when we compare the results from the
Rolling Regression and Random Walk strategies. Again, the “Max-Min” portfolio from
the Rolling Regression strategy outperforms the alternative investment strategy.

What is surprising about the results is the lack of positive excess returns when us-
ing the Contrarian investment strategy. DeBondt and Thaler maintain that significant re-
turn reversals exist for ‘loser’ and ‘winner’ portfolios and attribute such reversals to the
irrational behavior of investors. Therefore, portfolio returns are believed to revert to some
fundamental level over time. When applying a similar methodology to that used by
DeBondt and Thaler, the results appear to indicate otherwise. For example, using PFM 2
yields negative returns for the zero-net investment strategy. In fact, the “Max” portfolio
never outperforms its counterpart portfolio when the “parametric contrarian” investment
strategy is implemented.

A likely reason for the lack of performance by the Contrarian investment strategy
is the inherent differences in the portfolios used in this analysis and those used by
DeBondt and Thaler. The methodology used by DeBondt and Thaler require that extreme
‘winners’ and ‘losers’ be selected for portfolio formation. Specifically, they require that
‘winner’ and ‘loser’ portfolios consist of the top 35 stocks (as measured by excess returns
relative to the equal-weighted index) in their respective category. At the time of portfolio
formation, there exist enormous differences in portfolio returns. Using the methodology
that I have outlined is unlikely to produce such a large difference in returns between ‘wi-
nner’ and ‘loser’ portfolios, since stocks are not initially ranked on the basis of returns.
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Thus, it is unlikely that the results for the Contrarian investment strategy would mirror
DeBondt and Thaler’s results, since we are not dealing with extremes. Accordingly, it be-
comes increasingly more difficult to distinguish between the true ‘winners’ and ‘losers’
using standard contrarian investment strategies. It is this fact that makes the results for the
Rolling Regression strategy all the more interesting. Taking advantage of cross-sectional
information and forecasting returns using a parametric version of the contrarian strategy
appears to more efficiently predict future returns, even when the relative differences be-
tween overall portfolio returns are small.

In contrast to the results for PFM 2, 3, and 4, using PFM 1 provides little support
for the existence of mean reversion in portfolio prices. While the “Max” portfolio does
outperform the “Min” portfolio, the zero-net investment strategy produces excess returns
of only 0.019. The hypothesis that the mean returns of the respective portfolios are equal
cannot be rejected (p-value 0.660), thus confirming the proposition that temporary price
swings and their subsequent reversals may be missed when using portfolios that are rebal-
anced on a year-to-year basis.

4.4 Possible Explanations

The results clearly indicate that using a “parametric contrarian” investment strategy that
capitalizes on the existence of mean reversion yields returns that compare quite favorably
to alternative investment strategies. One question that does arise is whether the results are
achievable. The portfolios used in this analysis consist of a large number of stocks. From
an individual investor’s perspective, the results of the portfolio switching strategy out-
lined above are likely not easily obtained. Nevertheless, it may be possible to obtain simi-
lar excess returns by using portfolios with characteristics that mirror those used in this
study. The portfolios that I have constructed are essentially generalizations of popular
mutual funds, i.e., micro-, small-, mid-, and large-cap mutual funds and thus, to some ex-
tent, realistically portray actual portfolio choices. Assessing the impact of applying
“parametric contrarian” investment strategies to such realistic alternatives remains an
empirical question and is beyond the scope of this paper.

Even if the returns associated with the portfolio switching strategy used above are
achievable, it is possible that there are rational explanations for their existence. For exam-
ple, portfolio switching is likely to incur greater transaction costs than simply buying and
then holding one of the available indexes. Even if we consider the zero-net investment
strategy, in which one takes a long position on the “Max” portfolio and a short position on
the “Min” portfolio, there are no more than two ‘switches’ a year. The average number of
switches for the zero-net investment strategy is approximately one per year. Even with an
assumed transactions cost of 2% the “Max-Min” portfolio returns are quite sizeable.

Another possible explanation for the returns associated with the portfolio switching
strategy is relative risk factors. It is possible that the high returns are simply a trade-off
for incurring greater levels of systematic risk. While I will not develop the notion of risk
versus return in detail, I provide a quick look at the relative risk factors associated with
each portfolio by calculating simple Sharpe-Lintner betas. Betas for each of the various
investment strategies were calculated using the one-month Treasury-bill rate from Ibbot-
son and Associates as the risk-free rate and the equal-weighted NYSE/AMEX index as
the market return.
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The results are presented in Table 3. Broadly speaking, the betas presented in Table
3 appear to indicate that the returns from the “parametric contrarian” strategy underesti-
mate the true returns from pursuing this strategy. Relative to the equal-weighted index,
the risk-adjusted returns are actually greater than the calculated returns. In as far as the
CAPM provides an appropriate method of measuring risk, the results presented earlier are
not driven by relative risk factors of the “Max” and “Min” portfolios.

5. Conclusions

The findings presented above provide the following contributions to the existing litera-
ture on mean reversion in stock prices. Primarily, by employing a model developed for
the study of international markets to the study of domestic markets, I have shown that
mean reversion in stock prices does exist.

I have shown that analyzing the existence of mean reversion using size-sorted port-
folios using the standard portfolio formation method is inadequate at detecting a long-
term anomaly such as mean reversion and has lead past researchers (for example, Je-
gadeesh (1991), Gangopadhyay (1996), and Gangopadhyay and Reinganum (1996)) to
incorrectly conclude that mean reversion does not exist. I have provided an alternative
method of analyzing mean reversion using size-sorted portfolios that better accounts for
the loss of information that occurs using the standard portfolio formation method and
have found an overwhelming rejection of the random walk hypothesis for stocks that
trade on the New York and American stock exchanges. Further, I find speeds of reversion
between three to three and a half years. Contrary to the findings of Jegadeesh (1991) and
others, rejection of the random walk hypothesis occurs despite the use of post-World War
II data. A contributing factor to such findings is the use of panel estimations that capital-
ize on cross-sectional variation.

The results indicate that using a parametric version of DeBondt and Thaler’s
(1985) non-parametric contrarian strategy allows investors to earn substantial excess re-
turns by exploiting information in asset prices that revert to some fundamental trend
value. By using information in stock price variation more efficiently, vis-à-vis reparame-
terizing forecasts based on a series of rolling regressions, the parametric contrarian strat-
egy outperforms strategies based on standard contrarian strategies. Such significant
excess returns are not easily explained by simple beta risk differences between “Max”
and “Min” portfolios.
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Appendix: Delisting Returns and Survivorship

If a firm liquidates, equity holders are often left holding shares with an effective price of
zero. The corresponding return in the following period is –1. However, this return would
not be reported in the monthly returns data provided by CRSP. Rather than simply drop-
ping a stock from a portfolio once it is delisted, I assign the delisting return as provided
by the CRSP data files. Delisting returns represent the last available return to investors
and should be included in calculating a particular stock’s overall return. Therefore, where
present, delisting returns will be assigned to the relevant stock. The qualifier “where pres-
ent” is significant.

An important issue regarding the delisting data provided by CRSP was noted in
Shumway (1997). Shumway found that when stocks are delisted unexpectedly due to per-
formance reasons there is evidence of omitted delisting returns on the average of about
–30 percent. That is, stocks that delist for performance reasons (i.e., delisted for the fol-
lowing reasons: insufficient number of market makers, shareholders, price below accept-
able level, insufficient capital, surplus, and/or equity, bankruptcy, etc….) are often coded
as ‘dropped’ (missing data) in the CRSP delisting returns data. As a result, Shumway sug-
gests that stocks should be assigned a delisting return of –0.30 if stocks have missing de-
listing returns and delist due to performance reasons. However, CRSP has taken
extensive measures to correct this bias in the 1998 CRSP data files by researching over
800 stocks that were coded as ‘dropped’ in previous versions of the CRSP data files, in-
cluding those used by Shumway and Vincent (CRSP, 1999). It is my understanding that
the research conducted by CRSP in this particular area was in direct response to the find-
ings in Shumway (1997). In any event, those stocks selected for research by CRSP were
precisely those stocks in which Shumway found fault. Specifically, CRSP required a
stock to meet the following three guidelines prior to being researched: a) dropped from
the New York or American stock exchanges after 1962, b) assigned a delisting code be-
tween 500 and 588 (delisted for reasons of performance), c) possessed a missing delisting
return. While unable to provide new delisting returns for all of the stocks researched,
CRSP was able to assign new delisting returns for many of these stocks. Thus, the
number of stocks that should be given the corrected delisting return (–30 percent), as sug-
gested by Shumway, should be greatly diminished. Nevertheless, I assign the remaining
stocks that delist due to poor performance and possess missing delisting returns a return
of –30 percent. Furthermore, a stock that liquidates and is missing its delisting return is
assigned a delisting return of –1. Whether a stock delists due to liquidation, poor perform-
ance, merger, or acquisition is determined by the delisting code that accompany all stocks
covered in the CRSP database. Delisting codes are three digit codes that range from 100
to 802. Generally, stocks fall into one of four categories: stocks that are actively trading,
delist due to merger, delist due to liquidation, or delist due to other performance reasons
(‘dropped’). I adopt Shumway’s definition for stocks that delist due to performance rea-
sons as those stocks with delisting codes of 500, and 505 through 588.
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Endnotes

1. For a more complete discussion of literature on mean reversion see Forbes (1996).

2. Moreover, a significant portion of the mean reverting component in asset prices is con-
centrated in the month of January, while very little mean reversion exists in the remaining
months. Possible explanations for this finding have included a December sell-off of
poorly performing securities for tax purposes to time-variations in the market risk pre-
mium.

3. In fact, McQueen, using additional data from the Cowles Commission, fails to reject
the null hypothesis of a random walk in the period prior to 1926 (1871-1925) as well as
after 1946 (1947-1987).

4. Among those that analyze the time series properties of asset prices within the context
of market capitalization levels are Fama and French (1988), Jegadeesh (1991), Gango-
padhyay (1996), and Gangopadhyay and Reinganum (1996).

5. This model can be derived directly from the Fama and French (1988) temporary and
permanent components model.

6. This assumption does not imply that mean reversion across asset prices is synchro-
nized.

7. For example, Chiang, Liu, and Okunev (1995), relying on Marsh and Merton’s (1987)
claim that a firm’s fundamental value can be expressed as a simple linear function of
earnings and dividends, use earnings and dividends per share as a proxy for the funda-
mental. Also, Cutler, Poterba, and Summers (1991) use the logarithm of the dividend-to-
price ratio as a proxy for the fundamental value.

8. Similarly, in an international context, other researchers (Wu and Zhang (1997), Wu
and Zhang (1996), and Oh (1996)) have provided evidence of the increased power attrib-
utable to the use of panel frameworks when testing for unit roots.

9. While I have attempted to estimate the most realistic returns that are received by inves-
tors, it is important to clarify that the results are not sensitive to the alterations mentioned
above. In many cases the results are even more convincing in favor of mean reversion
when stocks are simply dropped from their respective portfolios. In any event, the differ-
ences are minute.

10. A reduction in the total number of stocks takes place due to the increased time horizon
that stocks must be actively traded.

11. The half-life is calculated as (ln(0.5)/ln(1-))Y, where is the median-unbiased estimate
of the speed of reversion and Y is the number of years used for the return horizon.

12. Holding Decile 2 over this period yields a return of 16.2%.
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Table 1
Summary of Portfolio Formation Methods

Portfolio
Formation
Method

Number
of times
stocks are
ranked

Period in which
stocks must trade
to be considered
for analysis

Number of
stocks that
qualify for
analysis

Stocks are ranked on the
following basis of

Period used for
estimation
purposes

PFM 1
(Standard)

Annually August –
December 1962

1981 Year-End Market
Capitalization (MC)

1963 – 1998

PFM 2 Once August –
December 1962

1981 Average MC from Aug –
Dec 1962

1963 – 1998

PFM 3 Once Jan 1963 – Dec
1967

1526 Average MC from Jan 1963
– Dec 1967

1968 – 1998

PFM 4 Once Jan 1963 – Dec
1998

358 Average Year-End MC
Ranking from 1962 – 1997

1963 – 1998
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Table 2
Panel Tests for Mean Reversion: Analysis of Portfolio Formation Methods

The table below reports the SUR estimation results for stock prices relative to a benchmark. The following restricted model is used to test for the presence of
mean reversion:
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The null hypothesis of Ho: � = 0 is tested against the alternative hypothesis, H1: �� 0. The test statistic is defined as t se
l

� �� � / (� ), where se(� )� is the standard

error of the parameter estimate,��. Portfolio Formation Methods are defined as follows. Method 1- portfolios consist of stocks that trade in August 1962
through December 1962, stocks are ranked on the basis of their year-end total market capitalization level and thus are updated on a yearly basis (sample used
in estimation: 1963-1998). Method 2- portfolios consist of stocks that trade in August 1962 through December 1962, stocks are ranked on the basis of their
total market capitalization level through December 1962. Method 3-portfolios consist of stocks that continuously trade over the period 1963-1967, stocks are
ranked on the basis of total market capitalization through this period (sample used in estimation: 1968-1998). Method 4-portfolios consist of stocks that
continuously trade over the period 1963-1998, stocks are ranked on the basis of their average year-end total market capitalization ranking. The implied
half-life is calculated as (ln(0.5)/ln(1-�))Y, where � is the median-unbiased estimate of �and Y is the number of years used for the return horizon.

Portfolio Formation Method

Nonoverlapping Method 1 Method 2 Method 3 Method 4

Return Horizon 12-months 24-months 12-months 24-months 12-months 24-months 12-months 24-months

Equal-Weighted Index

Point Estimate of 0.072 0.141 0.194 0.516 0.192 0.532 0.179 0.546

t� 4.377 3.125 6.749 9.112 6.635 9.300 7.002 11.242

p-value 0.684 0.931 0.031 0.050 0.060 0.090 0.031 0.019

z� 2.511 2.403 6.776 8.764 5.753 7.973 6.275 9.283

p-value 0.813 0.792 0.010 0.001 0.049 0.004 0.047 0.004

Median-Unbiased Estimate -0.008 -0.030 0.110 0.330 0.121 0.338 0.085 0.368

90% Confidence Interval [-0.04, 0.02] [-0.08, 0.03] [0.04, 0.17] [0.17, 0.48] [0.04, 0.17] [0.16, 0.46] [0.02, 0.16] [0.20, 0.51]

Implied Half-Life — — 5.950 3.460 5.370 3.360 7.800 3.010
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Table 3
Economic Significance: Portfolio Switching Strategies

The table below presents the mean annual return,R, and Sharpe-Lintner betas, , for each of the various investment strategies. Sharpe-Lintner betas are
calculated using the one-month Treasury-bill rate from Ibbotson and Associates as the risk-free rate and the equal-weighted NYSE/AMEX index as the
market return. Sample periods vary by strategy. Strategies: Buy-and-Hold-represents the average returns from holding the equal-weighted index (EW-Index)
and the equal-weighted portfolio of all deciles (Portfolios); Rolling Regression-represents a series of regressions (equation 1) from which forecasts are made.
Forecasts are based upon the updated parameters in each succeeding time period; Random Walk-equivalent to the rolling regression strategy except that stock
prices are assumed to follow a random walk (�=0) with drift; Contrarian-is based on the contrarian investment strategy developed by DeBondt and Thaler
(1985). Portfolios are ranked on the basis of their average three-year return. The portfolio with the lowest return indicates a ‘loser’ portfolio, while the
portfolio with the highest return designates a ‘winner’ portfolio. Following DeBondt and Thaler, ‘losers’ are expected to yield the highest returns in the
following three years, while the opposite is true for ‘winner’ portfolios. Hence, “Max” represents the portfolio with the highest expected returns (‘losers’) and
“Min” represents the portfolio with the lowest expected returns (“winners”). Significance is only determined for “Max-Min” portfolios. Portfolio Formation
Methods: PFM 1- portfolios consist of stocks that trade in August 1962 through December 1962. Stocks are ranked on the basis of their year-end total market
capitalization level and thus are updated on a yearly basis. PFM 2-portfolios consist of stocks that trade in Aug.-Dec. 1962. Stocks are ranked on the basis of
their total market capitalization level through December 1962. PFM 3-portfolios consist of stocks that continuously trade over the period 1963-1967, stocks
are ranked on the basis of total market capitalization through this period. PFM 4- portfolios consist of stocks that continuously trade over the period
1963-1998, stocks are ranked on the basis of their average year-end total market capitalization ranking. All forecasts are made using a return horizon of
twelve months.

PFM 1 PFM 2 PFM 3 PFM 4

Strategy Type R  R  R  R 

Buy-and-Hold EW-Index 0.155 1.000 0.155 1.000 0.154 1.000 0.155 1.000

Portfolios 0.172 0.986 0.158 0.903 0.157 0.886 0.157 0.741

Rolling Max 0.177 0.780 0.198 0.917 0.201 0.803 0.193 0.742

Regression Min 0.158 0.845 0.128 0.857 0.116 0.790 0.103 0.873

Max-Min 0.019 0.007 0.070** 0.131 0.085** 0.103 0.091** -0.051

Random Max 0.132 0.553 0.158 0.886 0.135 0.637 0.126 0.841

Walk (� = 0) Min 0.146 0.592 0.149 0.588 0.139 0.932 0.153 0.465

Max-Min -0.014 0.033 0.009 0.370 -0.004 -0.293 -0.027 0.457

Contrarian Max 0.146 0.985 0.165 0.939 0.130 0.702 0.148 0.761

(DeBondt-Thaler) Min 0.164 0.843 0.179 0.672 0.138 0.796 0.134 0.545

Max-Min -0.018 0.241 -0.014 0.338 -0.008 -0.005 0.014 0.297

Note: *, **, represent statistical significance at the five and one percent levels, respectively (only assigned to the “Max-Min” portfolios).


