
Behavior Analysis of an Infrastructure for Access Control Secure
Medical Image Sharing between PACS and DI-r

Introduction

This document describes various components in the architecture, especially various

repositories and registries, what they contain and their functionalities. Further, we

describe the simulation in IBM Rational Rhapsody using a case study.

Architecture

Fig 1: Proposed Infrastructure

Different Registries, Repositories and their contents:

Repositories and registries are employed for documentation, maintenance and

preservation of patient and user details. We make use of all these repositories and

registries to anonymize user details. By doing so we make sure that, the medical image

and the image details are separated and stored in different locations. They are linked

within the system by generating appropriate IDs. Hence, unauthorised users cannot

access images directly by intruding into the system. Following are the ones that we

have employed in our system.

Patient Identity Registry (PIR)

Medical Images when captured by image modalities will contain meta data associated

with the image. Normally this metadata will contain patient details such as name, sex,

date of birth, Health card number, age, address, contact number, etc. Prior to storing

Images in DIR, we register patient with a global registry called the Patient Identity

registry. The purpose of assigning this ID is to assign them a master ID irrespective of

the local ID that they already have from the home location.

XDS Document Registry

The purpose of this registry is to store the XDS ID of patients. Image metadata is

stored in XDS Document repository and is identified by using patient XDS ID. This ID is

linked to patient ID in PIR. As we already discussed, ID in PIR is linked to patient

details. In short, the patient details and image metadata are stored separately within

the system.

DI-r provider Registry

Diagnostic Imaging repository stores the medical images and associated meta data

from different vendors that are located in different locations. For the PACS to store their

images in DI-r, they have to register themselves with DIR provider registry as image

providers. Upon doing so, each provider will be assigned a DIR provider ID. Purpose of

registering providers is to make sure that only authorised image providers (PACS) and

the associated users can approach the system for image storage and retrieval.

DIR User Registry

User who approaches the system for image retrieval is undergone through various

checks prior to granting access token. Once the user has successfully cleared the

checks he is registered with the DIR User Registry. At a later stage when the user

approaches the XDS Document registry with the token, user ID in the DIR user registry

is checked to make sure that he has proper access rights.

System Policy Repository

System policy Repository has the system security policies defined by the administrator.

These policies restrict various roles in the hospital from accessing the patient details.

These roles include physician, nurse, radiologist, lab technician, etc. Policy is defined for

different roles. Permission is granted by considering the user location, type of image,

purpose of access, time and date of access, etc. Parameters can vary depending on the

requirement of the system.

Consent Repository

Consent repository has consents defined by the patient. Access is granted only if the

patient consent is allowing the user to access. Consent is defined by a patient for a

particular user includes parameters such as the name of a user, user role, his location,

type of image, time and date the user is allowing, purpose of retrieval etc.

Action Repository

Action repository stores the user action every time the user approaches the system.

Action consists of user information that is the user first name, last name, role, location.

In addition to it the data in the access request user ID, patient first name, patient last

name, health card no, dob, type of image, purpose of retrieve, access request time and

date. This is similar to an audit trail, which is a record of access requests made by

different users at different time.

Behavior Repository

User Behavior is extracted from the user action stored in the action repository. We

analyze user action for a period and extract frequently occurring pattern. For example,

a physician accessed the MRI image of a patient consequently for 5 days a week almost

same time every day. We look into the action repository and count the number of times

each of the patterns has occurred. The most frequently occurring patterns are

extracted and we call it the behavior of the user and store it in behavior repository.

XDS Document Repository

This repository has all the meta data associated with the image. It includes patient

XDS-ID, type of image and its availability, captured location, date, and Di-r image no.

When a user approaches the XDS Document registry, the token he submits will have a

reference to this registry, thereby providing the metadata associated with the image

and the index associated with that particular number.

Diagnostic Imaging Repository(DI-r)

Di-r is the database where all the medical images are stored. Images are stored with

the associated XDS ID. All other details related to the image are stored in different

repositories.

Case Study: Simulation results using IBM Rational Rhapsody and MySQl DB

As you can see in Fig 1, system does three main functionalities:

 OpenID Authentication

 OAuth based Access Control

 XDS-I profiles based Image retrieval

The following case study will explain the process of image retrieval by using the

methodology proposed in the architecture.

Different classes in IBM Rational Rhapsody

Fig 2: Classes in Rhapsody

In Fig 2, we see different classes employed in Rhapsody. The classes: ‘OpenID`,

`AuthServer_AccessControl` and `XDSI` handle the main functionalities of the system.

Class ‘DatabaseController’ contains various operations that connect Rhapsody to MySQL

DB for accessing data in DB. Lastly, we use the classes ‘UserAction’ and ‘UserDetails’ to

handle the attributes involved and carrying out other minor functionalities involved

while running simulation. Now we go into the details of functionalities of each of these

classes. We can explain the working of the system by using the following scenario :

Dr. Brown Kyle wants to access the image of patient Mr. Matt Basar

User Details:

• Brown Kyle

• Role : Physician

• Location : RVHS

• userID : 100466613

Patient Details:

• Patient Name: Matt Basar

• Health Card No : 100493164

• DOB: 1957-01-02

• Type of image: MRI

• Purpose: Diagnosis

Step 1 : Authentication with OpenID module

Fig 3: Statchart of class OpenID

As we see in Fig 4, initially OpenID module is in ‘waiting` state. Then user sends an

authentication request to OpenID module. User submits his credential and other details

that have to be securely stored in OpenID database. This can include the user’s

personal details, work details, etc. In our scenario user enters his credential and work

details, which includes his user id, password, name, role, location.

OpenID_Act ive

Wait ing
ReceivedUserCredential_Info

AuthReq/
userId=params.pUserId;
password=params.pPassword;
userFirstName=params.pUserFirstName;
userLastName=params.pUserLastName;
role=params.pRole;
locat ion=params.pLocation;

UserAlreadyExist

[userExists==true]

RegisterUser

 DatabaseController.registerUser(use...[userExists==false]

VerifyUserInfo

userExists = DatabaseController.verify...

ReceivedAccessReq

UserCredent ialToOpenID/

userId=params.pUserId;
password=params.pPassword;

isAuthenticated

[authenticated==true]

Unauthent icated
[authenticated==false]

CheckUserDetails

authent icate...

SendAuthenticat ionFailure to it sAuthServer_AccessControl

SendAuthenticatedUserDetails(userDetails.firstName, userDetails.lastName, userDetails.role, userDetails.location) to itsAuthServer_AccessControl

When OpenID receives the user id and password, it checks it with the data in the

database to see if the user has already registered with it. If the user is already

registered, it goes to ‘ useralready exist’ state and then it goes back to waiting state.

On the other hand, if the user is new, OpenID module issues an openid id to the user.

In the actual implementation, this OpenID is a url issued to the user. In our scenario,

we are generating an OpenID, which is a random id unique for each user. In the

database user details are separated form user credentials and are stored in two

different locations. This ensures that user data and credentials are more secure. We

use the openId generated to link between two tables.

From OpenID Statechart in Fig 4, we see that user initially sends authentication request

to the module. User is registered and the data is stored in the database. This will look

like Fig 4, Fig 5 and Fig 6 given below:

Fig 4: Authentication Request by user

Fig 5: System Response

Fig 6: Table with user credentials and OpenID in DB

Fig 7: Table with user details and OpenID in DB

Step 2 : Access Control Check and Issuing access token

Fig 8: Statechart Access Control Module

‘AuthServer_AccessCotrol’ class has the statecahrt as shown in figure 8. This module is

designed to perform the following tasks:

 Receiving access request made by a user to retrieve the image of a particular

user

 Checking to see if the user has entered the patient date of birth in the proper

format

 Contacting the OpenID module and verifying the authentication of the user

 Retrieving user work details such as user role, location from the OpenID module

if the user is found to be authenticated

 Storing the user action (user details, access time, patient details, type of image

and purpose of accessing) into action repository

 Checking if the access request made by the user is allowing the user to access

the corresponding image based on the consent defined by the patient

 Checking if the access request made by the user is allowing the user to access

the corresponding image based on the system security policies

AuthoriastionServer

Waiting UserCredentialToOpenID(userId, password) to itsOpenID

UserAuthenticated

SendAuthenticatedUserDetails/

 userFirstName = params.pFirstName;
 userLastName = params.pLastName;
 role = params.pRole;
 location = params.pLocation;

UserUnauthenticated

SendAuthenticationFailure

ExtractUserAction StoreActionRepository

ReceivedAccessRequest

AccessReq/
userId=params.pUserId;
password=params.pPassword;
patientFirstName=params.pPatientFirstName;
patientLastName=params.pPatientLastName;
dateOfBirth=params.pDateOfBirth;
healthCardNo=params.pHealthCardNo;
typeOfImage=params.pTypeOfImage;
purposeOfRetreival=params.pPurpose;

[inputVerified == true][inputVerified == false]

PatientAgentCOnsentCheck

 consentvalid = DatabaseC...

ConsentCheckCleared

[consentvalid==true]

ConsentCheck_Failed

[consentvalid==false]

ActionAgentPolicyCheck

AccesGranted

[policyValid==true]

AccessDenied

[policyValid==false]

CreateAccessToken

tokenXDSI(userAction.accessToken) to itsXDSI

RegisterUser_DIRUserReg

Check_ifConsentDefined

ConsentnotDefined

[consentDefined==true]

[consentDefined==false]

sendAccssTokenUser_RedirectToXDS

 Assigning DIR user ID (DIR User ID is created by modifying the user ID) and

registering the user with the DIR user registry once the user has successfully

gone through all the access control checks.

 Issuing access token to the user. This token will have the DIR user ID encrypted

in it.

Snapshots from Simulation:

1. Access Request made by the user

Fig 9: Access Request by user

Fig 10: System Response to access request

2. User Action stored to action repository

As we see in Figure 11, access request made by the user is stored in the action

repository. User details and patient details are stored in different tables and re

linked to the action repository table using user ID and patient HCN respectively.

Fig 11: Snapshot of action repository storing access request made by user

3. Patient Agent : Comparing the user action with patient consent

Next, we check the patient consent repository to see if the patient, for this

particular user, has defined consent. In figure 12, we see the patient consent

repository. Consent is defined by a patient for different users holding different

roles (doctor, nurse, lab technician, etc.). For example, let us consider data

corresponding to index 1 in the ‘patient consent repository’. We see (6, 1, 15,

15, 1) as values in row corresponding to index 1. This can be read as, patient

whose details corresponds to index 6 in ‘Patient Details’ table has defined a

consent for a user whose details corresponds to index 1 in ‘User Details’ table.

Value 15 in column ‘imagetype_permission’ corresponds to index 15 in `Image

Type-Permission’ table. Index 15 has values (1, 1, 1, 1) corresponding to column

(MRI, CT, US, XRAY). These columns can take values 0 or 1. 1 corresponds to

permission granted to access the image and 0 otherwise.

Fig 12: Snapshot of patient repository and associated tables

Similarly, Value 15 in column ‘purpose_permission’ corresponds to index 15

in`PurposeType-Permission’ table. Index 15 has values (1, 1, 1, 1) corresponding

to column (diagnosis, discharge, modify, study). These columns can also take

values 0 or 1. 1 corresponds to permission granted to access image for that

particular purpose and 0 otherwise.

Fig 13: Snapshot of system response based on the image type and purpose requested by the

user

Fig 14: Snapshot of patient repository and details about column ‘FK_seq’

Last column ‘FK_seq’ in ‘patient consent repository’ corresponds to the sequence

selected by the user. We see that user has selected value for ‘FK_seq’ column as 1.

Value 1 corresponds to the sequence defined in ‘sequence table’. We can define

different sequences based in values from the ‘access time range’ table. Allowed access

time range, which is the time interval during which user can access the data of a

patient. We have defined the time sequence for each month. We can define sequence

for weekly, bi weekly, yearly and so on depending on the choice of the system

designer. In our scenario, we have decided to move on by defining access time range

on a monthly basis as shown in Fig 13.

In our example, as you can see from Fig 11, action repository contains the record of

time and date corresponding to the access request made by the user. We extract the

month from the date and then extract the value in the ‘sequence table’ corresponding

to the month. Then we check to see if the access time falls within the ‘starttime’ and

‘endtime’ specified in the ‘access time range’ table. Result of this check is showed in

Figure 15.

 Fig 15: Snapshot of system response after checking the access time

By the end of this step user access request were compared with the consents defined

by the patient to access his medical images (MRI, CT, US, XRAY) for certain purposes

(diagnosis, discharge, modify, study) at certain time of the day. Depending on the

permission granted to the user at the end of this stage, access request is forwarded to

next stage for checking with the system security policies. If the user failed to meet the

consents defined by the patient, he is no longer allowed to access the image and the

request is terminated.

4. Action Agent: Comparing user action with system security policies

The system security administrator defines system security policies for different

people playing different roles (physician, nurse, lab technician, etc) in a hospital

environment. In our example, Dr. Brown Kyle is a physician working in RVHS. We

check with the ‘system policy repository' to see what are the access privileges

given for a physician from this location with respect to type of image and

purpose of retrieve.

Fig 16 : Snapshot of system policy repository and associated tables

System policy check is very similar to patient consent check except for the fact

that consent check is user specific whereas policy check is role specific. In figure

16, we see the system policy repository. A security administrator defines access

policies for different roles (doctor, nurse, lab technician, etc.) that access the

system from different medical environment. For example, let us consider data

corresponding to index 1 in the ‘system policy repository’. We see (1, 1, 15, 15,

1) as values in row corresponding to index 1. This can be read as “Physician

from SMH can access MRI, CT, US and XRAY images for the purpose of

Diagnosis, Discharge, modify and study”. In our example, Dr. Brown Kyle is a

physician working in RVHS has same privileges and hence his access request is

processed and is successful. Figure 16. ‘Accesssequencepattern’ column works

exactly the same way as described in the section above.

Once the user agent has success fully cleared the consent check and system

policy check we issue DIR user ID to the user. This is discussed in the next

section.

5. Assigning DIR user Id to user and storing it in DIR user registry

DIR user Id is dynamically assigned to the user once he has cleared the access

control checks. In our example, Dr. Brown Kyle with user ID 100466613 has

successfully passed all the checks and we assign DIR user ID in the following

way:

DIR User ID = (user ID*3) + 23 = 301399862

This is to generate an ID for the session. Each user will have a DIR user id and is

stored in the DIR user registry by including the access time as well. Including

time will help us to retrieve this ID at a later stage in an efficient way.

Fig 17: Snapshot of DIR user registry

6. Issuing access token to the user

Access token is usually a combination of numbers that are issued to the user as a

key or permission to access the requested resources. In our model, we embed

the DIR user ID within the token. This is to retrieve the user ID at a later stage.

Token is generated in the following way and issued to Dr. Brown Kyle:

token = 1234+ DIR user ID +5678 - (90*78)*23432 + (2356*6785) +

(555555*767676) = 1437377470

If the token issued to a user is lost, it is difficult for a third party to get any

information related to the user or patient.

Fig 18: Snapshot of system response after creating access token

At the end of this stage, the token is send to the user service module in the architecture

shown in Fig 1. Later user approaches XDS-I module with this token to retrieve the

image. In the following section, we describe the process of image retrieval.

Step 3: Retrieving Image using XDSI

Fig 19: State Chart XDS-I Module

XDS_I

waiting ReceivedAccessToken

tokenXDSI/

 token = params.token;

ExtractUserId ExtractUserAction RetreiveXDSID

RetreiveImageMetadata
RetreiveImageDisplayRetreivedImage

‘XDSI’class has the statechart as shown in figure 19. This module is designed to

perform the following tasks:

 Receiving the access token issued to the user

 Extracting DIR user ID by decrypting the token

 Extracting the original User ID from the DIR User ID

 Retrieving the user action (the access request made by the user) using user ID

 Finding the XDS ID of the patient using the Health card Number of patient

specified in access request

 Using XDS ID to find image metadata and the DIR image number from XDS

document repository

 Using Image number to retrieve image in DI-r

In our example, when the XDS-I module receives the access token, It is decoded to

obtain the DIR user ID. We use this ID to extract the User ID.

cipher = (5678 -(90*78)*23432 + (2356*6785)+ (555555*767676)+1234)

DIR user ID = token - cipher

Further we use the User ID to retrieve the access request made by the user (user

action) stored in the action repository. User action contains the details of patient

(name, health card no, date of birth), type of image requested and the purpose of

retrieving the image. Health Card Number (HCN) is the unique identity for each patient.

Hence, we issue XDS ID for patients and map them to the HCN. Later we use the XDS

ID to find the image Metadata stored in ‘XDS document repository’. From ‘XDS

Document repository’, we get the metadata associated with the image. This includes

the patient details (name, HCN, DOB), author details (name, role, location), exam

details (modality, body part, procedure code, location, date) and image no

(corresponding to image in DIR).

In our example, Dr. Brown Kyle wants to access the MRI image of patient Matt Basar

with Health Card No: 100493164, DOB: 1957-01-02 for the purpose of diagnosis. This

data is received from the action repository. From Fig 19, ‘XDS Document Registry’ we

see that XDS ID corresponding to HCN 100493164 is 811393833. Index 6 of ‘Patient

Details’ table corresponds to the details of patient. Index 6 ‘Exam Details’ table gives

the details of MRI image. Index 6 of ‘Author identity’ table gives the details of person

who took the image.

Fig 20: Snapshot of various tables involved in XDSI

Once we get the image metadata, we retrieve the image from the DI-r.

Fig 21: Snapshot of system response to XDS-I module

