CHAPTER 12: Multiple Regression

12.7 [LO 1]

- **a.** The plots show a linear (or somewhat linear) relationship between Price & Demand, IndPrice & Demand, PriceDiff & Demand, and AdvExp & Demand.
- **b.** The mean demand for the large size bottle of Fresh when the price of Fresh is \$3.70, the average industry price of competitors' similar detergents is \$3.90 and the advertising expenditure to promote Fresh is 6.50 (\$650,000).
- c. β_0 = meaningless in practical terms
 - β_1 = the mean change in demand for each additional dollar in the price of Fresh holding all other predictor variables constant.
 - β_2 = the mean change in demand for each additional dollar in the average price of competitors' detergents holding all other predictor variables constant.
 - β_3 = the mean change in demand for each additional \$100,000 spent on advertising Fresh holding all other predictor variables constant.
 - $\varepsilon =$ all other factors that influence the demand for Fresh detergent
- **d.** The plots for Demand vs. AdvExp and Demand vs. PriceDif appear to be more linear than the other two plots.

12.15 [LO 4, 5]

- **a.** SSE = 1.4318, $s^2 = 1.4317/(30-4) = .0551$
- **b.** Total variation = 13.4586Explained variation = 12.0268
- c. $R^2 = .894 = 12.0268/13.4586$ Adjusted $R^2 = .881 = (.894 - (3/29))(29/26)$ Approximately 89% of the variance in demand is predicted by price, average price, and

advertising, which drops to 88% when adjusted for the number of predictors.

- **d.** F = MSexplained/MSE = 72.80
- e. at <.05, model is significant, F-critical = 2.98
- **f.** at <.01, model is significant, F-critical = 4.64
- **g.** output p = .0000000000888

12.19 [LO 3]

a. $b_0 = 1946.8020$, $b_1 = 0.0386$, $b_2 = 1.0394$, $b_0 = -413.7578$

 $b_0 =$ labour hours when x-ray = 0, bed days = 0, and length of stay = 0 which is probably meaningless as the hospital has no patients staying there.

Instructor's Solution Manual Business Statistics in Practice, Second Canadian Edition © 2011 McGraw-Hill Ryerson Limited. All rights reserved. b_1 = implies that labour hours increases 0.04 for each unit increase in x-rays, when bed days and length of stay remain constant (predicted change).

 b_2 = implies that labour hours increases by 1.04 for each unit of increase in bed days when x-rays and length of stay remain constant (predicted change).

 b_3 = implies that labour hours decreases by 413.76 when length of stay decreases by one unit and both x-rays and bed days remain constant (predicted change).

b. $\hat{y} = 1946.802 + .0386 (56194) + 1.0394 (14077.88) - 413.7578 (6.89) = 15897.65$

c. Therefore, actual hours were 17207.31 - 15896.25 = 1311.06 hours greater than predicted.

12.29 [LO 6]

y = 17207.31 is above the upper limit of the interval [14906.2, 16886.3]; this y-value is unusually high.

12.33 [S 12.8]

The shorter interval is from the model using x_4 . This model is better.

12.35 [S 12.9]

Multiply: x_1x_2

12.37 [S 12.9]

 $y-hat = -2.3497 + 2.3611x_1 + 4.1831x_2 - 0.3489x_1x_2$

- $x_1 = radio / TV$ $x_2 = print$
- **a.** $x_2 = 1$, slope = 2.0122; $x_2 = 2$, slope = 1.6633; $x_2 = 3$, slope = 1.3144; $x_2 = 4$, slope = 0.9655; $x_2 = 5$, slope = 0.6166.

These slopes are the estimated average sales volume increase (in units of \$10,000) for every \$1,000 increase in radio and tv ads.

b. $x_1 = 1$, slope = 3.8342; $x_1 = 2$, slope 3.4853; $x_1 = 3$, slope = 3.1364, $x_1 = 4$, 2.7875; $x_1 = 5$, slope = 2.4386.

These slopes are the estimated average sales volume increase (in units of \$10,000) for every \$1,000 increase in print ads.

c. The smallest print slope is bigger than the largest radio/tv slope.

Student Solutions Manual Business Statistics in Practice, Second Canadian Edition © 2011 McGraw-Hill Ryerson Limited. All rights reserved.

12.39 [S 12.10]

An independent variable, the levels of which are defined by describing them.

12.41 [S 12.10]

The effect of the qualitative independent variable on the dependent variable.

12.45 [S 12.10]

- **a.** No interaction since *p*-values are so large.
- **b.** $\hat{y} = 8.61178 \ (861, 178 \ \text{bottles})$

95% prediction interval = [8.27089,8.95266]—slightly bigger

12.47 [S 12.11]

(k-g) denotes the number of regression parameters we have set equal to zero in H_0 . [n - (k + 1)] denotes the denominator degrees of freedom.

12.49 [S 12.11]

Model 3—complete
Model 1—reduced
$$H_0:\beta_4 = \beta_5 = \beta_6 = \beta_7 = 0$$

 $F = \frac{\frac{1.4318-.5347}{4}}{\frac{.5347}{22}} = 9.228$

 $F_{.05} = 2.82$ based on 4 and 22 degrees of freedom.

 $F_{.01} = 4.31$ based on 4 and 22 degrees of freedom.

Since 9.228 > 4.31, reject H_0 at $\alpha = .05$ and .01; Because the null hypothesis was that the equations have the same slope and intercept, rejecting the Ho means that at least one of these claims is false.

12.51 [LO 6]

 $\hat{y} = 30,626 + 3.893(28000) - 29,607(1.56) + 86.52(1821.7) \cong 251,056$

12.53 [LO 5]

a. Output for all:

SUMMARY OUTPUT All

Student Solutions Manual Business Statistics in Practice, Second Canadian Edition © 2011 McGraw-Hill Ryerson Limited. All rights reserved.

Regression Statistics						
Multiple R	0.878394					
R Square	0.771577					
Adjusted R						
Square	0.754006					
Standard Error	1.319372					
Observations	29					

ANOVA

					Significance
	df	SS	MS	F	F
Regression	2	152.8786	76.43932	43.91193	4.61E-09
Residual	26	45.25929	1.740742		
Total	28	198.1379			

		Standard				Upper	Lower	Upper
	Coefficients	Error	t Stat	P-value	Lower 95%	95%	95.0%	95.0%
Intercept	16.94219	1.435079	11.80575	6.01E-12	13.99234	19.89204	13.99234	19.89204
Age(x1)	-0.00066	0.013029	-0.05035	0.96023	-0.02744	0.026126	-0.02744	0.026126
Price(x2)	-0.05548	0.006086	-9.11638	1.4E-09	-0.06799	-0.04297	-0.06799	-0.04297

Significant regression model. Price is the only significant predictor.

b. Outputs:

SUMMARY OUTPUT

Males

Regression Statistics						
Multiple R	0.817165					
R Square	0.667758					
Adjusted R						
Square	0.607351					
Standard Error	1.408836					
Observations	14					

ANOVA

					Significance
	df	SS	MS	F	F
Regression	2	43.88127	21.94063	11.05422	0.002333
Residual	11	21.83302	1.98482		
Total	13	65.71429			

		Standard				Upper	Lower	Upper
	Coefficients	Error	t Stat	P-value	Lower 95%	95%	95.0%	95.0%
Intercept	13.23223	2.361521	5.603267	0.00016	8.034556	18.42991	8.034556	18.42991
Age(x1)	-0.07728	0.035932	-2.15066	0.054585	-0.15636	0.001808	-0.15636	0.001808
Price(x2)	-0.01943	0.017359	-1.11942	0.286809	-0.05764	0.018774	-0.05764	0.018774

Student Solutions Manual

Business Statistics in Practice, Second Canadian Edition

© 2011 McGraw-Hill Ryerson Limited. All rights reserved.

SUMMARY OUTPUT		Females			
Regression	Statistics				
Multiple R	0.948477	-			
R Square	0.899609				
Adjusted R					
Square	0.882877				
Standard Error	1.000841				
Observations	15				
		-			
ANOVA					
					Significance
	df	SS	MS	F	F
Regression	2	107.7131	53.85657	53.7661	1.02E-06
Residual	12	12.02019	1.001683		
Total	14	119.7333			
		Standard			
	Coefficients	Error	t Stat	P-value	Lower 95%
Intercent	13 83504	1 133/1	3 3/7125	0.005811	/ 820112

		Standard				Upper	Lower	Upper
	Coefficients	Error	t Stat	P-value	Lower 95%	95%	95.0%	95.0%
Intercept	13.83504	4.13341	3.347125	0.005811	4.829112	22.84097	4.829112	22.84097
X Variable 1	0.028102	0.02989	0.940197	0.365658	-0.03702	0.093226	-0.03702	0.093226
X Variable 2	-0.04714	0.013665	-3.44982	0.004807	-0.07691	-0.01737	-0.07691	-0.01737

Models are significant for both men and women. For men, Age has a slight negative relationship with interest (younger more interested, p<.10). For women, Price is the significant predictor (greater interest with lower prices, p<.01).

12.55 [S 12.9]

a. Interaction term is not a significant predictor (p>.10).

b. Introducing the interaction term decreases the F-value but increases the Multiple R slightly.

12.57 [LO 5]

a. β_5 : b₅ = 0.2137, Confidence Interval = [0.0851, 0.3423], p-value = .0022, significant at 0.01 but not 0.001 so we have very strong evidence.

 β_5 : b₆ = 0.3818, Confidence Interval = [0.2551,0.5085], p-value < .001, significant at 0.001 so we have extremely strong evidence.

b. $b_6 = .1681$ Confidence Interval: [.0363,.29], p-value = .0147, strong evidence.

Student Solutions Manual Business Statistics in Practice, Second Canadian Edition © 2011 McGraw-Hill Ryerson Limited. All rights reserved.

$$\begin{aligned} \mathbf{c.} \quad \mu_{[d,a,C]} - \mu_{[d,a,A]} &= [\beta_0 + \beta_1 d + \beta_2 a + \beta_3 a^2 + \beta_4 da + \beta_5(0) + \beta_6(1) + \beta_7 a(0) + \beta_8 a(1)] \\ &\quad - [\beta_0 + \beta_1 d + \beta_2 a + \beta_3 a^2 + \beta_4 da + \beta_5(0) + \beta_6(0) + \beta_7 a(0) + \beta_8 a(0)] \\ &= \beta_6 + \beta_8 a \\ &= -.9351 + .2035(6.2) = .3266 \\ &= -.9351 + .2035(6.6) = .408 \\ \mu_{[d,a,C]} - \mu_{[d,a,B]} &= [\beta_0 + \beta_1 d + \beta_2 a + \beta_3 a^2 + \beta_4 da + \beta_5(0) + \beta_6(1) + \beta_7 a(0) + \beta_8 a(1)] \\ &\quad - [\beta_0 + \beta_1 d + \beta_2 a + \beta_3 a^2 + \beta_4 da + \beta_5(1) + \beta_6(0) + \beta_7 a(1) + \beta_8 a(0)] \\ &= \beta_6 + \beta_8 a - \beta_5 - \beta_7 a \\ &= \beta_6 - \beta_5 + \beta_8 a - \beta_7 a \\ &= -.9351 - (-.4807) + .2035(6.2) - .1072(6.2) = .14266 \\ &= -.9351 - (-.4807) + .2035(6.6) - .1072(6.6) = .18118 \end{aligned}$$

Both differences increased with the larger value of *a*.

d. The prediction interval for the third model is slightly shorter.

The differences between campaign A and campaigns B & C change as volume level changes.