Binomial Probabilities

The Binomial Experiment:

- Experiment consists of n identical trials
- Each trial results in either "success" or "failure"
- Probability of success, p, is constant from trial to trial
- The probability of failure is $1-p$ and is constant from trial to trial
- Trials are independent
- If X is the total number of successes in n trials of a binomial experiment, then X is a binomial random variable
- For a binomial random variable X, the probability of x successes in n trials is given by the binomial distribution

$$
\operatorname{Pr}(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}, \quad k=1, \ldots, n
$$

- n ! is read as " n factorial" and n ! $=n \times(n-1) \times \cdots \times 2 \times 1$
- $0!=1$
- In our example, $p=0.4$ and $n=3$. So, we need to find

$$
\operatorname{Pr}(X=2)=\binom{3}{2}(0.4)^{2}(0.6)^{1}=0.288
$$

