Application of Binomial Probabilities in Testing a New Drug

- Current drug used is 50% effective but costs $\$ 100 /$ unit
- New discovery: The pharmaceutical company claims that their new drug is 70% effective, but will cost much more $(\$ 1,100)$
- Problem for hospital: Decide whether or not to switch to new drug. Look for evidence to support or reject the company's claim
- Hospital buys eight doses and tries it on $n=8$ patients
- Let X : \# patients cured. The possible values are, naturally, $\{0,1,2, \ldots, 8\}$. So, X is binomial with $p=0.7$
- The decision rule used by the hospital is as follows:

$$
\text { Decision Rule }= \begin{cases}\text { Adopt the new drug, } & \text { if } X=7 \text { or } 8 \\ \text { Don't adopt the new drug, } & \text { if } X=0,1, \ldots, 6\end{cases}
$$

- That is, if either 7 or 8 patients are cured, then they will adopt it
- It is possible that they may decide not to adopt the new drug even if is truly effective, as claimed
- What is the probability of this?

$$
\begin{aligned}
\operatorname{Pr}\{\text { Don't adopt }\} & =\operatorname{Pr}\{X=0,1, \ldots, 6\} \\
& =\binom{8}{0}(0.7)^{0}(0.3)^{8}+\binom{8}{1}(0.7)^{1}(0.3)^{7}+\cdots+\binom{8}{6}(0.7)^{6}(0.3)^{2} \\
& =0.74
\end{aligned}
$$

- So, there is a 0.74 probability of not adopting a truly effective drug
- This is very large and it may be unfair to the drug company
- We will call this probability the probability of Type I error (later in Chapter 8)

