Hypothesis testing

Single Sample Test of a Population Mean

- The null hypothesis, denoted H_0 , is a statement of the basic proposition being tested.
- The alternative or research hypothesis, denoted H_a , is an alternative (to the null hypothesis) statement that will be accepted only if there is convincing sample evidence that it is true
- One-Sided, "Greater Than" Alternative: $H_0: \mu \leq \mu_0$ vs. $H_a: \mu > \mu_0$
- One-Sided, "Less Than" Alternative: $H_0: \mu \ge \mu_0$ vs. $H_a: \mu < \mu_0$
- Two-Sided, "Not Equal To" Alternative: $H_0: \mu = \mu_0$ vs. $H_a: \mu \neq \mu_0$
- μ_0 is a given constant value (with the appropriate units) that is a comparative value
- As a result of testing H_0 vs. H_a , will have to decide either of the following decisions for the null hypothesis H_0 :
 - Do not reject H_0
 - Reject H_0
- In order to "test" H_0 vs. H_a , use the "test statistic"

$$z = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}}$$

where μ_0 is the given value or the hypothesized mean (often the claimed to be true) and \bar{x} is the mean of a sample

- Type I Error: Rejecting H_0 when it is true (Innocent guy found guilty)
- Type II Error: Failing to reject H_0 when it is false (Guilty guy found innocent)

Comparing Two Population Means by Using Independent Samples

• Here, what matters is the difference $\mu_1 - \mu_2$ between two means. The two-sided, not-equal alternative is $H_0: \mu_1 - \mu_2 = 0$ vs. $H_0: \mu_1 - \mu_2 \neq 0$.

- This is what we do with the Atkins diet case.
- Approach is similar to the single sample case, but the test statistic differs somewhat.