# Game-Theoretic Models in Supply Chain Management 2012 PhD Summer Academy <br> Zaragoza Logistics Center, SPAIN <br> Professor Mahmut Parlar <br> Final Exam (Take home) 

- Due date: July 2, 2012 (Monday), 1:00 p.m. in Room 317
- Each question is assigned 25 marks.

1. Vickrey auction: For this problem, we define the following. Let $S_{i}$ denote player $i$ 's strategy set $(i=1, \ldots, n)$, and $V_{i}\left(s_{i}, s_{-i}\right)$ be the payoff of player $i$ when his strategy is $s_{i}$ and other players use $s_{-i}=\left(s_{1}, \ldots, s_{i-1}, s_{i+1}, \ldots, s_{n}\right)$. A strategy $s^{\prime \prime}$ weakly dominates a strategy $s^{\prime}$ if and only if,

$$
\begin{aligned}
& V_{i}\left(s_{i}^{\prime \prime}, s_{-i}\right) \geq V_{i}\left(s_{i}^{\prime}, s_{-i}\right) \text { for all } s_{-i} \in S_{-i}, \text { and } \\
& V_{i}\left(s_{i}^{\prime \prime}, s_{-i}\right)>V_{i}\left(s_{i}^{\prime}, s_{-i}\right) \text { for some } s_{-i} \in S_{-i} .
\end{aligned}
$$

Now consider the first-price auction with two bidders. Player P1 values the item to be auctioned as $\$ 4$ and P 2 values it as $\$ 3$. (We assume complete information in this problem.) The bidder with the higher bid wins the item and pays the higher bid. When there is a tie, assume that the winner is determined using the result of tossing a fair coin. The payoffs are calculated as the difference between the valuation of a player and the actual payment. For example, if P1 pays 3 and P2 pays 1, P1 wins and pays 3 resulting in a payoff of $4-3=1$ for P 1 and 0 for P 2 since she does not win.
(a) For the first-price auction, show that the payoff matrix for the two players is given as,

|  |  | P 2 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1 | 2 | 3 | 4 | 5 |
|  | 1 | $\frac{3}{2}, 1$ | 0,1 | 0,0 | $0,-1$ | $0,-2$ |
|  | 2 | 2,0 | $1, \frac{1}{2}$ | 0,0 | $0,-1$ | $0,-2$ |
|  | 3 | 1,0 | 1,0 | $\frac{1}{2}, 0$ | $0,-1$ | $0,-2$ |
|  | 4 | 0,0 | 0,0 | 0,0 | $0,-\frac{1}{2}$ | 0,2 |
|  | 5 | $-1,0$ | $-1,0$ | $-1,0$ | $-1,0$ | $-\frac{1}{2},-1$ |

Start by eliminating all weakly-dominated strategies. Then find the Nash equilibrium for this game. Is it truth- revealing, i.e., will the bidders bid their true valuations?
(b) Now consider the second-price Vickrey auction where the higher bidder wins but pays the lower bid. For example, if P1 bids 3 and P2 bids 1, then P1 wins and pays 1, hence
his payoff is 3 (difference between 4 and 1) and P2's payoff is 0 . (Ties are broken as in the first-price auction.) Calculate the payoffs and eliminate all weakly-dominated strategies. Show that in this case bidding one's true valuation (i.e., 4 and 3 ) is the Nash equilibrium.
2. Consider the Battle-of-the-Sexes problem with one-sided incomplete information discussed in class. As you will recall, in this problem the Nature selects the women's type ("yes" or "no") with equal probabilities, i.e., $p(y)=p(n)=\frac{1}{2}$. In this problem, the payoff matrices were,

$$
y:\left(\begin{array}{ll}
2,1 & 0,0 \\
0,0 & 1,2
\end{array}\right), \quad n:\left(\begin{array}{ll}
2,0 & 0,2 \\
0,1 & 1,0
\end{array}\right)
$$

and the Bayesian Nash equilibrium (BNE) was $(S, \stackrel{y}{S} B)$ where $S$ is "soccer" and $B$ is "ballet." Now consider the same problem but assume that the Nature's probabilities are $p(y)=\rho$ and $p(n)=1-\rho$. Show that as long as $\frac{1}{3}<\rho<\frac{2}{3}$, the above BNE does not change. (Hint: Write the man's payoffs in the $2 \times 4$ strategic form in terms of the parameter $\rho$.)
3. Refer to Section 3.2.1 of the paper by Wu and Parlar [3]. Now set the parameters as [a,b| $\left.s_{1}, s_{2} \mid c_{2}\right]=[0.9,0.9|15,15| 8]$, but now since the unit purchase cost of the first newsvendor could be low or high, we let $\left[c_{1 L}, c_{1 H}\right]=[6,10]$. Demand densities are exponential, i.e., $f(x)=\lambda e^{-\lambda x}$ and $h(y)=\mu e^{-\mu y}$ with respective parameters $(\lambda, \mu)=\left(\frac{1}{30}, \frac{1}{30}\right)$. Find the Bayesian Nash equilibrium for this problem.
4. Consider Example 1 of Section 5 in Leng and Parlar [1]. In this example, we denote the Manufacturer, Distributor and Retailer as 1, 2 and 3, respectively, where the characteristic function values are $v(12)=12.31, v(13)=19.67, v(23)=21.62$, and $v(123)=42.68$.
(a) Briefly review the contribution of the Leng and Parlar [1] paper.
(b) Is the core empty or non-empty for this cooperative game? Explain.
(c) Find the Shapley value.
(d) Find the nucleolus using Leng and Parlar's analytic results in [2].

## References

[1] M. Leng and M. Parlar. Allocation of cost savings in a three-level supply chain with demand information sharing: A cooperative-game approach. Operations Research, 57(1):200-213, January-February 2009.
[2] M. Leng and M. Parlar. Analytic solution for the nucleolus of a three-player cooperative game. Naval Research Logistics, 57:667-672, 2010.
[3] H. Wu and M. Parlar. Games with incomplete information: A simplified exposition with inventory management applications. International Journal of Production Economics, 133:562577, 2011.

