I. Static Gams M/Complete Information (Nauh)

Player 1,...,h
Strategies
$$S_1,...,S_n$$
, $S_i \in S_i$
Payoff $TI_1(S_1,...,S_n),...,TI_n(S_1,...,S_n)$
Normal form $G = \{S_1,...,S_n;TI_1,...,TI_n\}$

1. Example

#1

Ex. Prione's dilemne

NC 0.0 0

#2

Det A strategy s_i is a bot response to a strategy vector s_i of other players of $Ti(s_i, s_i) \ge Ti(s_i, s_i)$ for all s_i

Det The strategy vector $S = (S_1, ..., S_n)$ is a

Nach equilibrum (NE) if

$$Ti(S_i, S_i) \ge Ti(S_i, S_i)$$
 for all S_i and i

Ex. B of S

Fr
$$0_2$$

F, 0_1

M

O, $0,0$
 $1,2$

Bet ispane
$$b_{i}(\cdot)$$
, $i=1,2$
 $b_{1}(F_{2})=F_{1}$ $b_{1}(O_{2})=O_{1}$ $b_{2}(O_{1})=F_{2}$ $b_{3}(O_{1})=O_{2}$ $b_{4}(O_{2})=O_{1}$ $b_{5}(O_{1})=O_{2}$ $b_{5}(O_{1})=O_{2}$

tx. Pricing problem (Bertrand)

lower price - sentire market

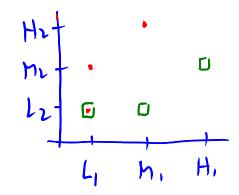
Equal " - Thank "

F2

$$H_2$$
 M_2 l_2 $b_1(M_2) \neq l_3$
 H_1 6,6 0,10 0,8 $b_2(L_1) \neq l_2 \neq M_2$

Game Theory Page

FI
$$D_1 = 10,0$$
 5,5 $0,\overline{8}$ $b_1(L_2) = L_1$ $b_2(L_1) = L_2$



· Mangasanian + Stone, JMAA 164

$$A_{mxn}$$
 B_{mxn}

$$U_{m \times i} = (1, \dots, 1)$$

$$V_{m \times i} = (1, \dots, 1)$$

max
$$x'(A+B)y-a-b$$

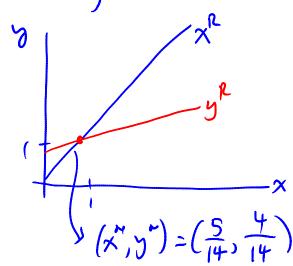
 x,y,a,b
S.t. $Ay-au \leq 0$
 $B'x-bv \leq 0$
 Zx_{i-1} $u'x=1$
 $y'y=1$
 $x \neq 0$

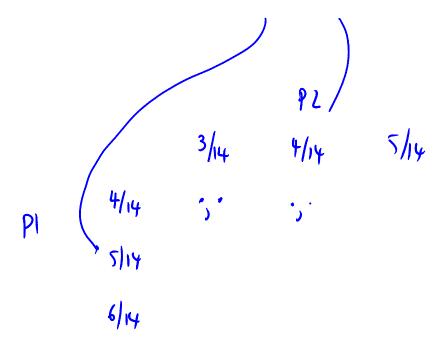
$$f(x,y) = -2x^2 + 5xy$$

 $g(x,y) = -3y^2 + 2xy + y$
 $x_1y>0$

Gren y:
$$\frac{\partial f}{\partial x} = -4x + 5y = 0$$
: $x = b_1(y) = \frac{5}{4}y$

11 y:
$$\frac{\partial g}{\partial y} = -6y + 2x + 1 = 0$$
: $y^R = b_2(x) = \frac{1}{6}(2x + 1)$





Ex. Coumot diopoly

Finite Finite

Quant

$$q_1 \quad q_2 \quad q_1$$
 $q_1 \quad q_2$
 $q_2 \quad q_3$
 q_4
 q_5
 q_6
 q_7
 q_7

Game Theory Page 5

 $= 9i \left[a - (9i+9i) - c \right]$

$$\frac{\partial \pi_i}{\partial q_i} = q - \frac{2}{2}q_i - q_j - c = 0$$

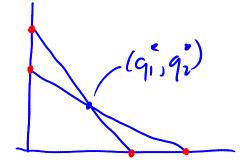
$$q_1 = \frac{1}{2}(q - q_2 - c)$$
 = $q_1 = q_2 = \frac{1}{3}(a - c)$
 $q_2 = \frac{1}{2}(a - q_1 - c)$ = NE

$$q_{1}^{*}$$
 q_{2}^{*} $\Pi_{i}(q_{i},q_{j})$
 $\frac{1}{3}(q_{-c})\frac{1}{3}(q_{-c})^{2}$

$$\Pi_{i}(q_{i}, q_{j})
 = \frac{1}{9}(q_{i} - c)^{2}$$

$$q_n = \frac{1}{2} (q-c)^2$$

$$\frac{1}{4}(q-c)^{2}$$



2. Mixed strategies

Ex. Hatching pennis

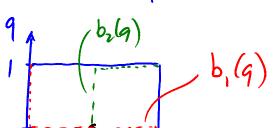
No pure str.

Thm. (Nach 50) for
$$G = \{S_1,...,S_n, \Pi_1,...,n_n\}$$
for finite n and finite S_i , \exists Nach
equilibrium, possibly involving mixed
trategies

$$v_{1}(p,q) = -1(pq) + 1(p)(1-q) + 1(1-p)q + (-1)(1-p)(1-q)$$

$$= 2p(1-2q) + 2q - 1$$

1-29>0:
$$1>29$$
, $9<\frac{1}{2} \Rightarrow p=1$
1-29
1-29
(0: $9>\frac{1}{2} \Rightarrow p=0$
1-29=0
 $9=\frac{1}{2} \Rightarrow p \in (0,1)$

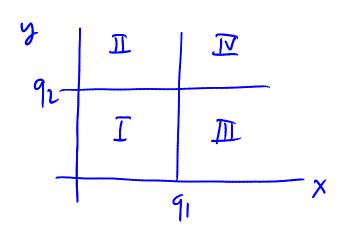


$$\frac{1}{2} + \frac{1}{2} + \frac{1}$$

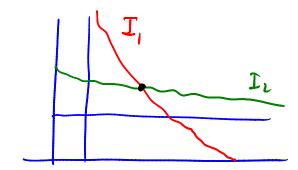
3. Two newvendon

$$J_{1}(q_{1},q_{2}) = s_{1} \int_{0}^{q_{1}} xf(x)dx + s_{1}q_{1} \int_{q_{1}}^{q_{2}} f(x)dx$$

$$+s_{1} \int_{0}^{q_{1}} b(y-q_{2})h f dydx - c_{1}q_{1}$$



$$B = (9, -x)/b + 92$$
, $A = (92-y)/a + 91$



$$f(x) = \lambda e^{\lambda x}$$
, $\lambda(y) = pe^{-py}$, $(\lambda, p) = (\frac{1}{30}, \frac{1}{20})$

$$(9.6 | S_{1}, S_{2} | G_{1}, G_{2}) = (.9, .9 | 15, .9 | 8, .5)$$

 $(9.6 | S_{1}, S_{2} | G_{1}, G_{2}) = (.25.38, 19.55)$
 $(9.7, 9.7) = (.83.63, 35.91)$

4. Existence + Uniquenes issues (Gachont Netessine '05)

Thm (Debreu '52) i If player's strategy Let is wish compact + convex + payoff functions are cont. + quasi-concave w.r.t.

each player's strategy =) = pure ~

strategy NE.

Uniqueness - algebraic method X - Contraction anapping - univalent mapping - Index Thm

Thm (contraction mapping).

PI PZ

$$A = \begin{bmatrix} 0 & \frac{\partial b_1}{\partial x_2} \\ \frac{\partial b_2}{\partial x_1} & 0 \end{bmatrix}$$

where $x_i = b_i(x_{-i})$ is the BR function. The problem has a unique soln \in $\rho(A) < 1$ where

 $P(A) = \{ \max |\lambda| : Ax = \lambda x, x \neq 0 \}$ Spectral radius

Ex.
$$f(x,y) = -7x^2 + 5xy$$
 $\partial b_1(y)/\partial y = 5/4$
 $g = -3y^2 + 2xy + y$ $\partial b_2(x)/\partial x = 1/3$

$$A = \begin{bmatrix} 0 & 5/4 \\ 1/3 & 0 \end{bmatrix}, \Rightarrow \lambda = \begin{bmatrix} .64 \\ -.64 \end{bmatrix}$$

$$P(A) = .64 < 1 \qquad \text{Unique NE}$$