## The normal probability distribution

- A normal random variable $X$ has the distribution (density)

$$
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}, \quad-\infty<x<\infty
$$

- Here $\mu$ is the mean and $\sigma$ is the standard deviation, and $\pi=3.14159 \ldots$ and $e=$ 2.71828...
- We write $X \sim N\left(\mu, \sigma^{2}\right)$
- Calculating probabilities corresponds to finding the area under the curve defined by $f(x)$
- If we use tables, it is necessary to standardize $X$ as follows

$$
Z=\frac{X-\mu}{\sigma}
$$

- We have that $Z \sim N(0,1)$.
- This way we can find any probability $\operatorname{Pr}(a<X<b)$ by converting the $X$ problem into $Z$ problem, i.e.,

$$
\begin{aligned}
\operatorname{Pr}(a<X<b) & =\operatorname{Pr}\left(\frac{a-\mu}{\sigma}<\frac{X-\mu}{\sigma}<\frac{b-\mu}{\sigma}\right) \\
& =\operatorname{Pr}\left(\frac{a-\mu}{\sigma}<Z<\frac{b-\mu}{\sigma}\right)
\end{aligned}
$$

- Tables have the probabilities for $Z$ r.v.
- Of course, R will do it much more easily.
- In our example, $X \sim N\left(7.13,0.27^{2}\right)$ and we need to find

$$
\begin{aligned}
\operatorname{Pr}(6.75<X<7.49) & =\operatorname{Pr}(-1.4074<Z<1.3333) \\
& =0.8291
\end{aligned}
$$

