
This is page i
Printer: Opaque this

Dynamic Programming (Chapter 6 in
Interactive Operations Research with Maple:

Methods and Models)

Mahmut Parlar

June 2, 2000



ii

ABSTRACT This document uses the “Springer Verlag Conference” Style. Replace
this text with your own abstract.



This is page iii
Printer: Opaque this

Contents

1 Dynamic Programming 3
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Stagecoach Problem . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Models with a Linear System and Quadratic Cost . . . . . . . . . 11

1.3.1 The Innite-Stage Problem . . . . . . . . . . . . . . . . . 17
1.4 Continuous-Time Dynamic Programming . . . . . . . . . . . . . 21

1.4.1 A Problem with Linear System and Quadratic Cost . . . . 24
1.4.2 A Problem with Quadratic and Linear Costs . . . . . . . . 26

1.5 A Constrained Work Force Planning Model . . . . . . . . . . . . 29
1.6 A Gambling Model with Myopic Optimal Policy . . . . . . . . . 34
1.7 Optimal Stopping Problems . . . . . . . . . . . . . . . . . . . . . 38

1.7.1 The Innite-Stage Problem . . . . . . . . . . . . . . . . . 41
1.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
1.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

References 47

Index 51



iv Contents



This is page v
Printer: Opaque this

List of Tables

1.1 Data for the stagecoach problem. . . . . . . . . . . . . . . . . . . 7



vi Contents



This is page 1
Printer: Opaque this

List of Figures

1.1 The form of the policy 2 x2 . . . . . . . . . . . . . . . . . . . . 32



2 Contents



This is page 3
Printer: Opaque this

1
Dynamic Programming

“Remember, today is the rst day
of the rest of your life.”

Popular mantra—circa 1970

1.1 Introduction

Dynamic programming (DP) is a simple yet powerful approach for solving certain
types of sequential optimization problems. Most real-life decision problems are
sequential (dynamic) in nature since a decision made now usually affects future
outcomes and payoffs. An important aspect of optimal sequential decisions is the
desire to balance present costs with the future costs. A decision made now that
minimizes the current cost only without taking into account the future costs may
not necessarily be the optimal decision for the complete multiperiod problem.
For example, in an inventory control problem it may be optimal to order more
than the current period’s demand and incur high inventory carrying costs now in
order to lower the costs of potential shortages that may arise in the future. Thus,
in sequential problems it may be optimal to have some “short-term pain” for the
prospect of “long-term gain.”

Dynamic programming is based on relatively few concepts. The state variables
of a dynamic process completely specify the process and provide information
on all that needs to be known in order to make a decision. For example, in an
inventory control problem the state variable xt may be the inventory level of the
product at the start of period t . Additionally, if the supplier of the product is not
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always available, then the supplier’s availability status may also be another state
variable describing the inventory system.

In the inventory control example, ordering decisions are made at certain times.
Such times are called stages and they may be discrete or continuous. If the inven-
tory is managed using a periodic-review system where decisions are made, say,
once every week, then the stage variable would be discrete and it may be sequen-
tially numbered by the integers t 0 1 2 . If, however, a continuous-review
(transactions reporting) system is in place, then the order decisions may be made
at any time and the stage variable would be continuous.

Having dened the state and stage variables, we now introduce the concept of
a decision, which is an opportunity to change the state variable. For example, if
the inventory level at time t is xt units, then ordering ut units is a decision that
increases the current inventory to xt ut units. The decision to order ut units
in period t results in a cost in the current period and depending on the demand
t , period t may end with negative or positive inventory resulting in shortages

or surpluses that may give rise to additional costs for the current period t . If the
process continues for, say, N periods into the future, the optimization problem
is to nd the best order policy that will minimize the total cost of the inven-
tory system. In general, the total cost incurred over N periods can be written as
N 1
t 0 Lt xt ut t LN xN where Lt is the cost incurred in period t .
The processes that are studied by dynamic programming pass from stage to

stage and thus the states undergo a transformation represented by the equation
xt 1 f xt ut t . In the inventory example, after a demand realization of t
units in period t , the next period’s state is computed from xt 1 xt ut t
where the transformation function takes the form f xt ut t xt ut t .
Depending on the nature of the demand t , the transformation may be determinis-
tic or stochastic. In the former case, the next period’s state variable xt 1 is known
with certainty, but in the latter case xt 1 is a random variable whose distribution
can be obtained as a function of xt ut and t .

Finally, we dene an optimal policy as a decision rule that computes an op-
timal decision ut for each conceivable value of the state variable xt at stage
t 0 1 N 1, i.e., [ 0 x0 1 x1 N 1 xN 1 ]. Using the
optimal policy , the optimal decision is computed from ut t xt . For ex-
ample, in the inventory problem, an optimal policy may be shown to be of the
form

t xt
St xt if xt St
0 otherwise

where St is the “base-stock” level computed using the problem parameters [Sca60].
At any stage, the optimal decision (a number) is computed using the above policy.
If at the start of period 4 we have x4 3 and, say, S4 10, then the optimal order
quantity u4 in period 4 is obtained as u4 4 3 10 3 7 units.
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Using the “principle of optimality”1 that was rst enunciated by Richard Bell-
man [Bel52], [Bel57, p. 83], dynamic programming is used to “divide and con-
quer” a sequential optimization problem by decomposing it into a series of smaller
problems. Once the smaller problems are solved, they are combined to obtain the
solution of the complete problem.

For example, consider a three-period inventory problem with t 0 as the be-
ginning of December, t 1 as the beginning January and t 2 as the beginning
February. Using the “backward-recursion” approach of DP, we would rst nd the
optimal solution for February—the last stage—and compute the optimal decision
u2 2 x2 as a function of any possible value of the inventory x2 at the start
of February. With the information on the optimal decision available, we would
then compute the minimum cost V2 x2 for February. Stepping back one month,
the optimal policy 1 x1 for January would be found by adding the costs for that
month to the minimum cost V2 x2 that was found for February. This solution
would then be used to compute the minimum cost V1 x1 (“cost to go”) for peri-
ods 1 and 2 (January and February). Finally, the optimal solution for December
would be computed taking into account the costs for that month plus the cost to
go V1 x1 for the remaining months of January and February. Once the optimal
policy is found for each month as a function of the entering inventory for that
month, as time progresses and state variables xt are observed, actual decisions
would be computed using the optimal policy functions t xt , t 0 1 2.

As we indicated, the three-month inventory control example uses the backward-
recursion approach of DP. For an interesting discussion of a puzzle and a mathe-
matical proof using the backward approach, see Nemhauser [Nem66, pp. 19–22
]. When the process studied is deterministic, it may also be possible to use the
“forward-recursion” approach, which can sometimes be more intuitive. For de-
tails of the forward approach, we refer the reader to Bertsekas [Ber95, p. 52],
Cooper and Cooper [CC81, p. 114–122], Danø [Dan75, pp. 150–155] and Larson
and Casti [LC78, p. 233].

Sequential optimization problems with discrete stages can be conveniently for-
mulated using the state-equation approach as in Bertsekas [Ber95]. The state
transformation of the basic problem is represented by a discrete-time dynamic
system

xt 1 ft xt ut t t 0 1 N 1 (1.1)

where xt is the state (with x0 a given constant), ut is the control and t is the
uncontrollable exogenous disturbance parameter that may be deterministic or ran-
dom. There may be constraints on the control variables such as ut 0 so that ut
may have to be an element of a constraint space Ct . When the problem is deter-
ministic, there may also be constraints on the state variables so that xt may have
to be an element of the constraint space St . If Lt xt ut t is the cost incurred

1“An optimal policy has the property that whatever the initial state and initial decision are, the
remaining decisions must constitute an optimal policy with regard to the state resulting from the rst
decision.”
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during period t , then the objective would be to minimize

N 1

t 0
Lt xt ut t LN xN (1.2)

which is the total cost function for the N -stage sequential problem. Note that if
the disturbance t is a random variable, then the proper statement of the objective
would involve expectations with respect to all the random variables, i.e.,

E 0 1 N 1

N 1

t 0
Lt xt ut t LN xN

To solve the sequential optimization problems given by (1.1)–(1.2), we will
rst dene the cost to go (or value) function Vt xt as the minimum (expected)
cost that can be obtained by using an optimal sequence of decisions for the re-
mainder of the process starting from an arbitrary state xt in an arbitrary stage
t 0 1 N 1 N . This function can be written as

Vt xt min
ut uN 1

N 1

i t
Li xi ui i LN xN , t 0 1 N 1

VN x LN xN

where the decision ui must be chosen from the feasible set Ci , i t N 1.
Using the separability properties of this additive cost function and the principle
of optimality, it can be shown that (see, for example, Bertsekas [Ber95, p. 19],
Nemhauser [Nem66, pp. 28–31], Larson and Casti [LC78, pp. 45–47]) the value
function Vt xt is the solution of a functional equation given as

Vt xt min
ut Ct

Lt xt ut t Vt 1[ ft xt ut t ] , t 0 1 N 1

VN xN LN xN

We note here that when t is random, we minimize the expected value of the
term inside the brackets, i.e., E t Lt xt ut t Vt 1[ ft xt ut t ] , where,
of course, the expectation is taken with respect to the probability distribution of
t . In this case Vt xt is dened as the minimum expected cost to go for stages
t t 1 N .

If the objective function is in the multiplicative form, i.e., if we are trying to
optimize N

t 0 Lt xt ut t , then the functional equations for the value function
are obtained as

Vt xt min
ut Ct

Lt xt ut t Vt 1[ ft xt ut t ] , t 0 1 N 1

VN xN min
uN CN

LN xN uN N
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For details of this problem, see Larson and Casti [LC78, pp. 48–49] and Nemhauser
[Nem66, p. 37]. The multiplicative objective was originally used by Bellman and
Dreyfus [BD58] to model some types of reliability problems.

We will now discuss some examples of sequential decision problems and present
their analytic solution using Maple. We will see that Maple’s ability to manipulate
symbolic expressions makes it an ideal tool for extracting the optimal policies for
these problems.

1.2 Stagecoach Problem

Our rst example is a simple but illustrative deterministic dynamic program-
ming problem that is known in the operations research literature as the “stage-
coach problem.” It deals with a hypothetical 19th-century stagecoach company
that transports passengers from California to New York. Although the starting
point (California) and the destination (New York) are xed, the company can
choose the intermediate states to visit in each stage of the trip.

We assume that the trip is completed in four stages (legs) where stage 1 starts
in California, stage 2 starts in one of three states in the Mountain Time Zone (say,
Arizona, Utah or Montana), stage 3 starts in one of three states in the Central
Time Zone (say, Oklahoma, Missouri or Iowa) and stage 4 starts in one of two
states in the Eastern Time Zone (North Carolina or Ohio). When stage 4 ends, the
stagecoach reaches New York, which is the nal destination.

Since in those days travel by stagecoach was rather dangerous because of at-
tacks by roaming criminals, life insurance was offered to the traveling passengers.
Naturally, the cost of the insurance policy was higher on those portions of the trip
where there was more danger. The stagecoach company thus faced the problem
of choosing a route that would be cheapest and thus safest for its passengers.

2 3 7 (3,3) 1
4 4
8 (4,2)

2 3 6 5
1 1 4 2 2 2 (3,2) (5,1)

3 4 3 4
6 (4,1)
1 3

(2,1) 4 (3,1) 3

TABLE 1.1. Data for the stagecoach problem.
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The nodes in the diagram in Table 1.1 are denoted by i j where i corresponds
to a stage i 1 2 5 and j corresponds to a state in state i . Given the state
j in stage i , the decision to travel to state k in the next stage i 1 results in a cost
(i.e., insurance premium) of ci j k . These costs are indicated next to the arrows
corresponding to each decision. For example, c11 2 4 and c21 3 6. The
problem is to nd the route that results in the minimum cost.

For this problem, the value function Vi j is the minimum cost from state i j
to the nal state 5 1 using the optimal policy. Thus, the dynamic programming
recursive equations are written as

V51 0

Vi j min
k
ci j k Vi 1 k

where the expression inside the parenthesis is minimized by a suitable choice of
the decision variable k.

In the Maple worksheet that follows we enter the cost data as lists, e.g., c[1,1]
:=[3,4,2]. This means that if we are now in state 1 1 , the cost of going to
states (2,1), (2,2) and (2,3) are 3, 4 and 2, respectively.

restart: # StageCoach.mws
c[1,1]:=[3,4,2];

c1 1 : [3 4 2]
c[2,1]:=[4,1,6]; c[2,2]:=[4,2,3];
c[2,3]:=[8,4,7];

c2 1 : [4 1 6]

c2 2 : [4 2 3]

c2 3 : [8 4 7]
c[3,1]:=[3,3]; c[3,2]:=[3,6]; c[3,3]:=[4,1];

c3 1 : [3 3]

c3 2 : [3 6]

c3 3 : [4 1]
c[4,1]:=[4]; c[4,2]:=[5];

c4 1 : [4]

c4 2 : [5]
For stage 5, the boundary condition for the value function is trivially obtained

as 0.
i:=5;

i : 5
V[i,1]:=0;
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V5 1 : 0
Stage 4 computations are also trivial since, once in stage 4, the stagecoach must

travel to the last state.
i:=4;

i : 4
for j from 1 to 2 do
V[i,j]:=min(seq(c[i,j][k]+V[i+1,k],k=1..1));
TC[i,j]:=[seq(c[i,j][k]+V[i+1,k],k=1..1)];
for k from 1 to 1 do
u[i,j,k]:=is(TC[i,j][k]=V[i,j]) od od;

V4 1 : 4

TC4 1 : [4]

V4 2 : 5

TC4 2 : [5]
for j from 1 to 2 do for k from 1 to 1 do
print([i,j,k,u[i,j,k],TC[i,j][k]]) od od;

[4 1 1 true 4]

[4 2 1 true 5]
For stage 3, we nd the value function for each state and the corresponding

optimal decision. For example, [3 1 1 true 7] means that in state [3 1] it is
optimal to choose k 1, which results in a minimum overall cost of 7. Thus,
the word true next to a decision (the third component in the list) implies the
optimality of that decision. On the other hand, the word f alse implies that the
corresponding decision is not optimal.

i:=3;

i : 3
for j from 1 to 3 do
V[i,j]:=min(seq(c[i,j][k]+V[i+1,k],k=1..2));
TC[i,j]:=[seq(c[i,j][k]+V[i+1,k],k=1..2)];
for k from 1 to 2 do
u[i,j,k]:=is(TC[i,j][k]=V[i,j]) od od;

V3 1 : 7

TC3 1 : [7 8]

V3 2 : 7

TC3 2 : [7 11]

V3 3 : 6
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TC3 3 : [8 6]
for j from 1 to 3 do for k from 1 to 2 do
print([i,j,k,u[i,j,k],TC[i,j][k]]) od od;

[3 1 1 true 7]

[3 1 2 false 8]

[3 2 1 true 7]

[3 2 2 false 11]

[3 3 1 false 8]

[3 3 2 true 6]
Stage 2 and stage 1 calculations are performed in a similar manner:

i:=2;

i : 2
for j from 1 to 3 do
V[i,j]:=min(seq(c[i,j][k]+V[i+1,k],k=1..3));
TC[i,j]:=[seq(c[i,j][k]+V[i+1,k],k=1..3)];
for k from 1 to 3 do
u[i,j,k]:=is(TC[i,j][k]=V[i,j]) od od;

V2 1 : 8

TC2 1 : [11 8 12]

V2 2 : 9

TC2 2 : [11 9 9]

V2 3 : 11

TC2 3 : [15 11 13]
for j from 1 to 3 do for k from 1 to 2 do
print([i,j,k,u[i,j,k],TC[i,j][k]]) od od;

[2 1 1 false 11]

[2 1 2 true 8]

[2 2 1 false 11]

[2 2 2 true 9]

[2 3 1 false 15]

[2 3 2 true 11]
i:=1;

i : 1
for j from 1 to 1 do
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V[i,j]:=min(seq(c[i,j][k]+V[i+1,k],k=1..3));
TC[i,j]:=[seq(c[i,j][k]+V[i+1,k],k=1..3)];
for k from 1 to 3 do
u[i,j,k]:=is(TC[i,j][k]=V[i,j]) od od;

V1 1 : 11

TC1 1 : [11 13 13]
for j from 1 to 1 do for k from 1 to 3 do
print([i,j,k,u[i,j,k],TC[i,j][k]]) od od;

[1 1 1 true 11]

[1 1 2 false 13]

[1 1 3 false 13]

We can now extract the optimal solution from the results. From the initial
state (1,1), it is optimal to travel to (2,1) at a one-stage cost of 3 since we nd
[1,1,1,true,11].2 Next, from (2,1) it is optimal to go to (3,2) at a cost of 1 since
[2,1,2,true,8].3 From (3,2), the stagecoach should travel to (4,1) at a cost of 3,
and nally from (4,1) it will go to (5,1) at a cost of 4. Adding the one-stage costs
we nd 3 1 3 4 11 as we found from [1,1,1,true,11].

1.3 Models with a Linear System and Quadratic Cost

Now, consider the sequential problem with the cost function 2
t 0 x2

t u2
t x2

3
and the system equations xt 1 xt ut , t 0 1 2 with x0 given as a constant.
In this deterministic problem with quadratic costs and linear system dynamics,
it is desirable to bring the state as close as possible to the origin in the cheapest
possible way. Deviations from the origin for both the state xt and the decision ut
are penalized using quadratic terms. We will assume that x0 0 (otherwise the
solution would be trivial) and that there are no constraints on the state and the
control.

Although this model with linear system and quadratic cost appears simple, its
generalizations have found applications in economics and operations research;
see Bensoussan, Hurst and Näslund [BHN74, Chapter 3], Holt, Modigliani, Muth
and Simon [HMMS60], Parlar [Par82], Parlar and Gerchak [PG89] and Parlar and
Rempała [PR92].

Forming the DP functional equation, we have

Vt xt min
ut

[x2
t u2

t Vt 1 xt ut ] t 0 1 2

2This also indicates that the overall minimum cost is 11.
3If the trip had started in state (2,1), the overall minimum cost to New York would be 8.
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V3 x3 x2
3 .

We will now use Maple to solve this functional equation and generate the opti-
mal policy for the problem.

restart: # LQ2.mws

We begin by informing Maple that the boundary condition is V3 x x2.
V[3]:=x->x^2;

V3 : x x2

Now, for period 2 the cost expression that should be minimized is c2 x2
2 u2

2
V3 x2 u2 , i.e., the sum of the current cost and the future minimum cost with
x3 x2 u2 as the state for stage 3.

c[2]:=x^2+u^2+V[3](x+u);

c2 : x2 u2 x u 2

Differentiating this expression, equating the result to zero and solving gives the
optimal policy in period 2 as 2

1
2 x .

deriv[2]:=diff(c[2],u);

deriv2 : 4 u 2 x
mu[2]:=solve(deriv[2],u);

2 :
1
2
x

Using these results, the value function V2 x for period 2 is found as a quadratic
function of the state variable.

V[2]:=unapply(subs(u=mu[2],c[2]),x);

V2 : x
3
2
x2

Repeating the same procedure for the other stages, the optimal decision and the
value function is computed explicitly as a function of the state variable in each
stage:

c[1]:=x^2+u^2+V[2](x+u);

c1 : x2 u2 3
2
x u 2

deriv[1]:=diff(c[1],u);

deriv1 : 5 u 3 x
mu[1]:=solve(deriv[1],u);

1 :
3
5
x

V[1]:=unapply(subs(u=mu[1],c[1]),x);
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V1 : x
8
5
x2

c[0]:=x^2+u^2+V[1](x+u);

c0 : x2 u2 8
5
x u 2

deriv[0]:=diff(c[0],u);

deriv0 :
26
5
u

16
5
x

mu[0]:=solve(deriv[0],u);

0 :
8

13
x

V[0]:=unapply(subs(u=mu[0],c[0]),x);

V0 : x
21
13
x2

The results (to three signicant digits) are summarized in the table below.

t t x Vt x
0 0 615x 1.615x2

1 0 6x 1.6x2

2 0 5x 1.5x2

3 x2

Thus, if the initial value of the state is, say, x0 1, then using the optimal
decisions prescribed by the policy

0 x 1 x 2 x 0 615x 0 6x 0 5x

one would obtain a total minimum cost of V0 1 1 615 for the periods 0 1 2
and 3. For this case, the numerical values of the optimal decisions are obtained as
follows:

t xt ut
0 1 0 615
1 0.385 0 231
2 0.154 0 077
3 0.077

Now suppose that the initial decision is not made optimally and instead of u0
0 615 we use, say, u0 0 5, which brings the system to x1 1 0 5 0 5.

What is the best decision now at the start of period 1 given this value of the
state? As the principle of optimality states, “An optimal policy has the property
that whatever the initial state and initial decision are, the remaining decisions
must constitute an optimal policy with regard to the state resulting from the rst
decision.” Thus, in period 1 we make the optimal decision for that period using
u1 1 0 5 0 6 0 5 0 3. This is the power and elegance of the
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dynamic programming approach: Regardless of what may have transpired in the
past, at the start of any period we know exactly what to do since DP makes the
optimal policy available for all periods and for any value of the state.

In this example we can see another aspect of the power and exibility of dy-
namic programming. Now consider the following case: After applying the correct
decision u0 0 615, what happens if for some reason there is an unexpected
random disturbance on the system and we nd x1 0 4 (instead of 0.385)?
The answer is fortunately very simple. Since we have the optimal policy avail-
able to us as 1 x1 0 6x1, we just compute the new (optimal) decision as
u1 0 6 0 4 0 24. Even though the correct initial decision u0 0 615
resulted in an unexpected value of the state x1 0 4, we can still make the next
decision in stage 1 optimally using the optimal policy 1 x1 for that stage.

Solution as a Nonlinear Programming Problem

We note that the sequential optimization model described above can also be solved
as a standard nonlinear programming (NLP) problem with six decision variables
x u x1 x2 x3 u0 u1 u2 , the objective function f x u 2

t 0 x2
t

u2
t x2

3 and three equality constraints h1 x1 x0 u0 0, h2 x2 x1 u1
0 and h3 x3 x2 u2 0 with x0 as a given constant. The methods discussed
in Chapter ??, Nonlinear Programming, can be applied and using the method of
Lagrange multipliers, the optimal solution can be found.

Writing the Lagrangian as

L x u µ f x u
3

t 1
t ht x u

where µ 1 2 3 are the Lagrange multipliers, we obtain the solution for
this problem using Maple as follows.

restart: # LQ2NLP.mws
x[0]:=1:
f:=sum(x[t]^2+u[t]^2,t=0..2)+x[3]^2:
h[1]:=x[1]-x[0]-u[0]:
h[2]:=x[2]-x[1]-u[1]:
h[3]:=x[3]-x[2]-u[2]:
X:=seq(x[t],t=1..3):
U:=seq(u[t],t=0..2):
L:=f+sum(theta[k]*h[k],k=1..3):
L_x:=seq(diff(L,x[k]),k=1..3):
L_u:=seq(diff(L,u[k]),k=0..2):
L_theta:=seq(diff(L,theta[k]),k=1..3):
Digits:=3:
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evalf(solve({L_x,L_u,L_theta},{X,U,theta[1],
theta[2],theta[3]}));

u2 0769 1 1 23 x1 385 u1 231 2 462 x2 154
x3 0769 3 154 u0 615

Naturally, the solution here is the same as the one we found before. However,
note that the NLP solution is in some sense “frozen” because unlike the DP so-
lution it cannot directly deal with a situation where after applying u0 0 615
there is an unexpected random disturbance on the system and we nd x1 0 4
(instead of 0.385). To answer this question, the NLP problem must be re-solved
for stages 1, 2 and 3 with x1 0 4 as the initial value of the state in stage
1. This shows that the DP approach is, in general, much more powerful than a
competing optimization technique since the DP solution is obtained in terms of
dynamic policies rather than the static—frozen—decisions produced by the com-
peting techniques.4

The simple model described and solved using DP can easily be generalized us-
ing Maple. For example, one may assume that there are ideal (i.e., target) levels
xt t 1 2 N and ut t 0 1 N 1 for the states and deci-

sions, respectively, and that deviations from these trajectories are to be penalized
quadratically at a cost of qt for the states and rt for the decisions. If the dis-
turbances also follow a particular trajectory t t 0 N 1 , then the
sequential optimization problem can be written

min
N 1

t 0
qt xt xt 2 rt ut ut 2 qN xN xN 2

subject to the linear constraints

xt 1 at xt btut t , t 0 1 N 1

with given at and bt , t 0 1 N 1. Following is a Maple program that
automates the solution of this more general problem via DP where N 3 with
the arrays xHat, q, uHat, r, a, b and w having the obvious meanings.

restart: # LQ2Auto.mws
N:=3: #Assume N=3
xHat:=array(0..N,[4,3,2,1]):
q:=array(0..N,[1,2,1,2]):
uHat:=array(0..N-1,[1,2,3]):
r:=array(0..N-1,[2,2,3]):
a:=array(0..N-1,[1,7,2]):
b:=array(0..N-1,[4,2,1]):

4In engineering terminology, nonlinear programming would produce “open-loop” decisions
whereas dynamic programming gives rise to “closed-loop” policies; see Bertsekas [Ber95, p. 4] and
Kirk [Kir70, pp. 14–16].
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w:=array(0..N-1,[2,-3,1]):
Digits:=3:
V[N]:=unapply(q[N]*(x-xHat[N])^2,x);

V3 : x 2 x 1 2

for t from N-1 by -1 to 0 do
c[t]:=q[t]*(x-xHat[t])^2+r[t]*(u-uHat[t])^2
+V[t+1](a[t]*x+b[t]*u+w[t]
);
deriv[t]:=diff(c[t],u);
mu[t]:=evalf(solve(deriv[t],u));
V[t]:=
unapply(evalf(simplify(subs(u=mu[t],c[t]))),x);
od;

c2 : x 2 2 3 u 3 2 2 2 x u 2

deriv2 : 10 u 18 8 x

2 : 1 80 800 x

V2 : x 5 80 x2 10 4 x 14 8

c1 : 2 x 3 2 2 u 2 2 5 80 7 x 2 u 3 2 72 8 x
20 8 u 16 4

deriv1 : 50 4 u 56 8 162 x

1 : 1 13 3 21 x

V1 : x 24 6 x2 192 x 29 8

c0 : x 4 2 2 u 1 2 24 6 x 4 u 2 2 192 x
768 u 30 2

deriv0 : 791 u 391 197 x

0 : 494 249 x

V0 : x 1 12 x2 6 51 x 50 3

The results for the optimal policy and the value function for each period t
0 3 are summarized in the following table.

t t x Vt x
0 0 249x 0 494 1 12x2 6 51x 50 3
1 3 21x 1 13 24 6x2 0 192x 29 8
2 0 8x 1 8 5 80x2 10 4x 14 8
3 2 x 1 2
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It is worth noting that in this more general problem the optimal policy is linear
and the value function is quadratic in the state variable. This result would be valid
even when the states and the controls are multidimensional and the disturbances
are random provided that the cost is quadratic and the system equations are linear
with no constraints on the states and controls. For a discussion of this issue, see
Bertsekas [Ber95, Section 4.1].

1.3.1 The Innite-Stage Problem
In many realistic sequential optimization problems arising in business and eco-
nomics, there may either be a very large number or innitely many stages. For
example, a long-term planning problem involving the next 10 years where a deci-
sion has to be made each month would have 120 stages. Although this number is
nite, it is large enough so that approximating the problem with an innite number
of stages may be useful in understanding the structure of the optimal policy.

As an example, consider the simple sequential problem discussed above. If we
now assume that N , the problem can be written as

min
t 0

x2
t u2

t

subject to
xt 1 xt ut , t 0 1 .

For such a problem, the functional equations Vt xt for, say t 100 and t 99
would be given by

V100 x100 min
u100

[x2
100 u2

100 V101 x101 ]

and
V99 x99 min

u99
[x2

99 u2
99 V100 x100 ].

Since there is some regularity in the system equations xt 1 ft xt ut xt ut
and the cost function Lt x2

t u2
t (i.e., that t does not appear explicitly in ft or

Lt ), under certain conditions the functional equation for the value function can be
written as

V x min
u

L x u V [ f x u ] ,

which can be solved (usually iteratively) for the unknown function V x .5

5In order for V x to remain nite, three conditions are required: (i) L x u must be bounded for
nite x and u, (ii) a state x and control u must exist such that L x u 0 and (iii) the specied state
x must be reachable from any admissible state by applying a nite number of admissible controls; see,
Larson and Casti [LC78, p. 222].
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Successive Approximations

One of the methods that can be used to solve this problem is known as “successive
approximations” or “approximation in function space.” The method starts with a
guess V 0 x for the solution V x . Using this guess, a new value of the function
V 1 x is computed from

V 1 x min
u

L x u V 0 [ f x u ] (1.3)

where the corresponding policy 1 x is found as the value of u that mini-
mizes the right-hand-side of (1.3) for each x . The successive approximations
method continues in this manner while computing the value function’s nth ap-
proximation V n from V n 1 using V n x min

u
L x u V n 1 [ f x u ] .

Here, n 1 is determined as the value of u that minimizes the right-hand side
L x u V n 1 [ f x u ] for each x . This is a relatively easy method to apply
using Maple.

restart: # LQInf.mws
Digits:=4;

Digits : 4
In the nite horizon version of this problem we had observed that the value

function was quadratic in the state variable x . Armed with this information, we
make the initial guess for the value function as V 0 2x2. The following lines
automate the successive approximation of the value function and the policy .

L:=(x,u)->x^2+u^2;

L : x u x2 u2

V[0]:=x->2.*x^2;

V0 : x 2 x2

for n from 0 to 5 do
c[n]:=(x,u)->L(x,u)+V[n](x+u):
diff(c[n](x,u),u):
uApp:=solve(%,u);
subs(u=uApp,c[n](x,u)):
V[n+1]:=unapply(simplify(%),x);
od;

c0 : x u L x u Vn x u

6 u 4 x
uApp : 6667 x

1 667 x2
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V1 : x 1 667 x2

c1 : x u L x u Vn x u

5 334 u 3 334 x
uApp : 6250 x

1 625 x2

V2 : x 1 625 x2

c2 : x u L x u Vn x u

5 250 u 3 250 x
uApp : 6190 x

1 619 x2

V3 : x 1 619 x2

c3 : x u L x u Vn x u

5 238 u 3 238 x
uApp : 6182 x

1 618 x2

V4 : x 1 618 x2

c4 : x u L x u Vn x u

5 236 u 3 236 x
uApp : 6180 x

1 618 x2

V5 : x 1 618 x2

c5 : x u L x u Vn x u

5 236 u 3 236 x
uApp : 6180 x

1 618 x2

V6 : x 1 618 x2

We thus see that, after about ve iterations, the solution quickly converges to
V x 1 618x2 and x 0 618x .
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A Closed-Form Solution for a More General Cost Function

Now consider a more general problem where we wish to minimize t 0 Qx2
t

Ru2
t subject to the usual state dynamics xt 1 xt ut . Here, deviations from

the origin for the state and control variables are penalized differently.
In this case the functional equation for the value function assumes the form

V x min
u

[Qx2 Ru2 V x u ]. Using the information obtained for the
structure of the optimal policy and the form of the value function, we assume that
V x Ax2 and attempt to nd a closed-form formula for the coefcient A. The
symbolic manipulation of the expressions to solve this problem is relegated to
Maple, which nds the solution easily.

restart: # LQClosedForm.mws

V:=x->A*x^2;

V : x A x2

c:=Q*x^2+R*u^2+V(x+u);

c : Q x2 R u2 A x u 2

cu:=diff(c,u);

cu : 2 R u 2 A x u
usol:=solve(cu,u);

usol :
A x
R A

RHS:=normal(subs(u=usol,c));

RHS :
x2 A Q R A Q R

R A
Asol:=solve(V(x)=RHS,A);

Asol :
1
2
Q

1
2

Q2 4 Q R
1
2
Q

1
2

Q2 4 Q R

subs(A=Asol[1],usol);

1
2
Q

1
2

Q2 4 Q R x

R
1
2
Q

1
2

Q2 4 Q R

Note that since Q Q2 4QR 0 and since the minimum cost V x
must be nonnegative, we choose the rst solution Asol[1] for A in the above
computations.

V:=subs(A=Asol[1],V(x));

V :
1
2
Q

1
2

Q2 4 Q R x2
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To summarize, the optimal policy and the value function for this general case
are obtained as x Ax R A and V x Ax2 where

A
1
2
Q Q2 4QR .

Naturally, for the special case when Q R 1, we obtain A 1 618 so that
V x 1 618x2 and x 0 618x as we had found previously.

The Model with a Discount Factor

In most practical problems with long planning horizons, it would be important to
discount the future cash ows to account for the concept of time value of money.
Thus, if 1 1 r is the discount factor with r as the interest rate and

0 1 , then the objective would be to minimize the net present value of
the future costs, which would now be written as min t 0

t x2
t u2

t . With this
objective, the functional equation for the value function assumes the form V x
min
u

L x u V [ f x u ] , which can be solved for V x in the usual way.
Naturally, in this case the value function V x would be dened as the minimum
discounted cost that can be obtained by using an optimal sequence of decisions
for the remainder of the process starting from an arbitrary state x in an arbitrary
stage.

Although we do not present it here, it would be a simple matter to apply the suc-
cessive approximation method to solve a more general problem with discounted
cost and stationary target values, i.e.,

min
t 0

t Q xt x 2 R ut u 2

subject to
xt 1 xt ut , t 0 1 .

For example, assuming Q 2, x 1, R 3, u 1 5, and 0 9 and starting
with the initial guess of V 0 4x2 2x 60, after about seven iterations the
method converges to the value function V x 3 55x2 1 15x 61 6 and to
policy x 0 642 0 516x .

1.4 Continuous-Time Dynamic Programming

A different type of innite-stage sequential optimization problem arises when
the system evolves continuously over time and a decision must be made at each
instant. In this case, even if the decision horizon is nite, the continuous nature of
the process results in an innite number of decisions.

Let us now suppose that the system evolves according to the differential equa-
tion x t f [x t u t t], 0 t T with the initial value of the state x 0



22 1. Dynamic Programming

x0 given as a constant. This differential equation is the continuous-time analogue
of the discrete-time state equations that were written as xt 1 f xt ut t ,
t 0 1 N 1 in Section 1.3. We wish to minimize the cost functional
T

0 L[x t u t t] dt S[x T T ], which is the continuous-time analogue of
the sum N 1

t 0 Lt xt ut t LN xN .
Similar to the discrete-time formulation, let us dene the value function V t x

as the minimum cost that can be obtained starting in state x t at time t [0 T ].
The value function can then be written as

V t x min
u

T

t
L x u d S[x T T ] (1.4)

subject to
x f x u , x t x

with the condition that at the nal time t T , we have V [x T T ] S[x T T ].
If we write the integral in (1.4) as

V t x min
u

t t

t
L d

T

t t
L d S

where t is an innitesimally small interval, then by the principle of optimality
we obtain

V t x minu
t t t

t t

t
L d minu

t t T

T

t t
L d S (1.5)

subject to
x f x u , x t t x x .

This follows from the principle of optimality because the control u for t t
T is optimal for the problem starting at time t t in state x t t

x x .
Now using the denition of V t x , we can rewrite (1.5) as

V t x minu
t t t

t t

t
L d V t t x x

Assuming V x t to be twice differentiable and expanding V t t x x
using Taylor’s theorem gives

V t x min
u

[L x u t t V t x Vt t x t

Vx t x x higher order terms]

Subtracting V t x from both sides, dividing by t and letting t 0 we obtain

0 min
u

[L x u t Vt t x Vx t x x]

min
u

[L x u t Vt t x Vx t x f x u t ]
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Since the term Vt t x does not involve the decision u, we move it to the left and
obtain the partial differential equation (PDE) for the value function V t x as

Vt t x min
u

[L x u t Vx t x f x u t ]

with the boundary condition V [x T T ] S[x T T ]. The resulting PDE is
known as the Hamilton-Jacobi-Bellman (HJB) equation since it was originally
developed by Bellman [Bel53] to solve problems in the calculus of variations.
For discussions of the development of this PDE and examples of its solution,
see Bertsekas [Ber95, p. 91–92], Bryson and Ho [BH75, p. 135], Kamien and
Schwartz [KS81, pp. 238–240], Kirk [Kir70, pp. 86–90] and Sage and White
[SW77, pp. 76–77].

A Remark on Discounting

Note that if we have an innite horizon problem and if continuous discounting is
applied with a discount factor e rt , then the optimization problem would be to
minimize 0 e rt L x u t dt subject to the state equation x f x u with the
initial state as x 0 x0. In this case, the HJB equation would be written as

Vt t x min
u

[e rt L x u t Vx t x f x u t ]

without any boundary condition on the value function. Here the value function is
dened as the minimum cost discounted to time zero that can be obtained starting
at time t in state x and using the optimal policy. However, it can be shown that for
“autonomous” systems where time does not appear in the cost function (except
for the discount term) and in the system equations, a similar ordinary differential
equation (ODE) can be found for the HJB problem where the value function V x
would be dened as the minimum cost discounted to the current time.

In autonomous systems, the problem is to minimize 0 e rt L x u dt subject
to x f x u . For this problem we write the HJB equation where discounting is
to the current time (rather than to time zero) as

V t x min
u

[L x u e r t V t t x x ]

Since e r t 1 r t and the value function at t t x x is expanded
as

V t t x x V t x Vt t Vx x

after simplications and usual limiting operations the HJB equation is obtained
as an ODE in terms of V x as follows:6

rV x min
u

[L x u V x f x u ].

6Note that in the limiting operations we have lim t 0 x t x f x u .
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For a more detailed discussion of this issue, see Beckmann [Bec68, Part IV] and
Kamien and Schwartz [KS81, pp. 241–242].

We now consider two examples where the HJB partial differential equation can
be solved explicitly to nd the value function and the optimal policy.

1.4.1 A Problem with Linear System and Quadratic Cost
Consider the following continuous-time version of the sequential optimization
problem with quadratic cost and linear state equation adapted from Kamien and
Schwartz [KS81, pp. 240–241]. We wish to minimize

0
e rt Qx2 Ru2 dt

subject to x u with the initial condition x 0 x0 0. We now solve the HJB
equation Vt minu[e rt Qx2 Ru2 Vxu] for this problem using Maple.

restart: # LQPDE.mws
L:=(x,u)->exp(-r*t)*(Q*x^2+R*u^2);

L : x u e r t Q x2 R u2

f:=u;

f : u
RHS:=L(x,u)+diff(V(t,x),x)*f;

RHS : e r t Q x2 R u2
x V t x u

The optimal policy is obtained in terms of Vx as follows.
uSol:=combine(solve(diff(RHS,u),u),exp);

uSol :
1
2

x V t x e r t

R
Using this policy we develop the HJB partial differential equation and attempt

to solve it using Maple’s pde() function.
HJB:=-diff(V(t,x),t)=L(x,uSol)
+diff(V(t,x),x)*uSol;

HJB : t V t x

e r t Q x2 1
4

x V t x 2 e r t 2

R
1
2

x V t x 2 e r t

R
pdesolve(HJB, V(t,x));

Error, (in pdesolve/exact/charac) dsolved returned
multiple answers,
[{t(_F1) = -_F1+_C4}, {P[2](_F1) =
DESol({(diff(diff(_Y(_F1),_F1),_F1)*R
+r*diff(t(_F1),_F1)*diff(_Y(_F1),
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_F1)*R+Q*_Y(_F1))/R},{_Y(_F1)})
*_C3, x(_F1) =-1/2*exp(r*t(_F1))/Q
*diff(DESol({(diff(diff(_Y(_F1),_F1),_F1)*R
+r*diff(t(_F1),_F1)*diff(_Y(_F1),_F1)*R
+Q*_Y(_F1))/R},{_Y(_F1)}),_F1)*_C3},
{P[1](_F1) =Int(1/4*r*(4*exp(-2*r*t(_F1))
*Q*x(_F1)^2*R+P[2](_F1)^2)*exp(r*t(_F1))/
R,_F1)+_C2}, {U(_F1) =
Int((-P[1](_F1)*R+1/2*P[2](_F1)^2
*exp(r*t(_F1)))/R,_F1)+_C1}]

Unfortunately, Maple fails to nd a solution to this PDE and returns an error
message. Thus, using our intuition obtained from the discrete-time version of this
type of problem with quadratic cost and linear system dynamics, we try a solution
in the form V t x e rt Ax2 where the constant A is to be determined.

V:=(t,x)->exp(-r*t)*A*x^2; Vt:=diff(V(t,x),t);
Vx:=diff(V(t,x),x);

V : t x e r t A x2

Vt : r e r t A x2

Vx : 2 e r t A x

HJB;

r e r t A x2

e r t Q x2 e r t 2 A2 x2 e r t 2

R
2
e r t 2 A2 x2 e r t

R
simplify(HJB);

r e r t A x2 e r t x2 Q R A2

R
Substituting and simplifying, we nally reduce the problem to the solution of a

quadratic equation in terms of the unknown A:

ASol:=solve(HJB,A);

ASol :
1
2
r R

1
2

r2 R2 4 Q R
1
2
r R

1
2

r2 R2 4 Q R

Since the value function must be positive, we choose the rst solution of ASol
so that we have A 1

2r R
1
2 r2R2 4QR. The optimal policy is then ob-

tained as u A R x .

uSol:=combine(uSol);

uSol :
A x
R
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1.4.2 A Problem with Quadratic and Linear Costs
Many of the examples discussed are somewhat standard because they involve a
quadratic cost function with linear state equations. We now describe the solu-
tion of a more difcult problem where the cost function consists of a mixture of
quadratic and linear terms. We will see that Maple is again very helpful in manip-
ulating expressions that give rise to the value function and the optimal policy for
the model.

Consider the following problem that appears as an exercise in Kamien and
Schwartz [KS81, p. 242]. We wish to minimize the cost functional T

0 c1u2

c2x dt subject to x u with x 0 0 and x T B. Kamien and Schwartz
suggest using V t x a bxt hx2 t kt3 as the trial form for the value
function. Keeping this hint in mind, we proceed with the development of the HJB
partial differential equation.

restart: # LPDE.mws

L:=(x,u)->c[1]*u^2+c[2]*x;

L : x u c1 u2 c2 x
f:=u;

f : u
The right-hand side of the HJB equation that will be minimized is L x u

Vx f x u . Differentiating this expression, equating to zero and solving for u
gives the optimal policy function in terms of the unknown Vx .

RHS:=L(x,u)+diff(V(t,x),x)*f;

RHS : c1 u2 c2 x x V t x u
uSol:=solve(diff(RHS,u),u);

uSol :
1
2

x V t x
c1

HJB:=-diff(V(t,x),t)=L(x,uSol)
+diff(V(t,x),x)*uSol;

HJB : t V t x
1
4

x V t x 2

c1
c2 x

An attempt to solve the PDE explicitly using Maple fails.
pdesolve(HJB, V(t,x));

Error, (in pdesolve/exact/charac) dsolved returned
multiple answers,
[{P[1](_F1) = _C4}, {P[2](_F1) = -c[2]*_F1+_C3},
{U(_F1) =Int((-P[1](_F1)*c[1]
+1/2*P[2](_F1)^2)/c[1],_F1)+_C2}, {x(_F1) =
Int(1/2/c[1]*P[2](_F1),_F1)+_C1},
{t(_F1) = -_F1+_C5}]
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At this stage we make use of the trial form of the value function and compute
its derivatives with respect to t and x .

V:=(t,x)->a+b*x*t+h*x^2/t+k*t^3;
Vt:=diff(V(t,x),t); Vx:=diff(V(t,x),x);V(T,B);

V : t x a b x t
h x2

t
k t3

Vt : b x
h x2

t2
3 k t2

Vx : b t 2
h x
t

a b B T
h B2

T
k T 3

HJB:=lhs(HJB)-rhs(HJB);

HJB : b x
h x2

t2
3 k t2

1
4

b t 2
h x
t

2

c1
c2 x

The HJB equation is now reduced to a nonlinear algebraic equation in terms of
x , t2 and x2 t2 with unknown constants A, B, H and K , which we now compute
analytically.

The coefcients of x and t2 are easily extracted using the Maple coeff()
function.

cx:=coeff(HJB,x);

cx : b
b h
c1

c2

ct2:=coeff(HJB,t^2);

ct2 : 3 k
1
4
b2

c1

To extract the coefcient of x2 t2, we use a somewhat obscure Maple function
algsubs() that performs more general algebraic substitutions than the substi-
tutions subs() function can make. This substitution will have a temporary effect
of dening x2 t2 as z2, thus making the expression a polynomial so that the co-
eff() function can be applied.

x2t2:=algsubs(x^2/t^2=z^2,expand(HJB));

x2t2 :
b c1 b h c2 c1 x

c1

1
4

12 k c1 b2 t2

c1

h z2 c1 h
c1

cx2t2:=coeff(x2t2,z^2);

cx2t2 :
h c1 h

c1
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To make sure that we have not missed any terms while extracting the coef-
cients, we perform a simple check and observe that everything is in order.

simplify(cx*(x)+ct2*(t^2)+cx2t2*(x^2/t^2)-HJB);

0
Now that we have the algebraic expressions for the coefcients of x , t2 and

x2 t2, (i.e., cx, ct2 and cx2t2) and the nal time condition that V [T x T ]
V T B 0, we can solve the resulting system of four nonlinear equations in
the four unknowns a, b, h and k.

solve({cx,ct2,cx2t2,V(T,B)},{a,b,h,k});

h 0 k
1

12
c22

c1
a

1
12
c2 T 12 B c1 c2 T 2

c1
b c2 h c1

k
1

48
c22

c1
b

1
2
c2 a

1
48

24 c2 B T 2 c1 48 c12 B2 c22 T 4

T c1
Maple nds two solutions but we use the one where the solution is nonzero.

assign(%[2]);
a; b; h; k;

1
48

24 c2 B T 2 c1 48 c12 B2 c22 T 4

T c1

1
2
c2

c1

1
48
c22

c1
The value function V t x and the optimal production rate x u are now

easily computed as functions of the stage t and state x .
V(t,x); # Value function

1
48

24 c2 B T 2 c1 48 c1
2 B2 c2

2 T 4

T c1

1
2
c2 x t

c1 x2

t
1
48
c2

2 t3

c1
Vx;

1
2
c2 t 2

c1 x
t

expand(simplify(uSol)); # Optimal production rate

1
4
t c2

c1
x
t

To obtain an analytic expression for the optimal production rate u t and for the
optimal inventory level x t , we solve x t u t using the form of the optimal
policy just determined.
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dsolve({diff(x(t),t)=(t*c[2]/(4*c[1]))+x(t)/t,
x(0)=0, x(T)=B},x(t));

x t
1
4
t2 c2

c1

1
4
t c2 T 2 4 B c1

T c1
assign(%);
xOpt:=unapply(normal(x(t)),t);
uOpt:=unapply(normal(diff(x(t),t)),t);

xOpt : t
1
4
t c2 t T c2 T 2 4 B c1

T c1

uOpt : t
1
4

2 c2 t T c2 T 2 4 B c1

T c1

1.5 A Constrained Work Force Planning Model

Many of the models discussed so far were relatively simple since the costs were
quadratic and there were no constraints on the state or the decision variables. We
now present a more complicated sequential decision problem of work force plan-
ning with constraints on both state and decision variables. For a discussion of sim-
ilar models, see Bensoussan, Hurst and Näslund [BHN74, pp. 58–72], Hillier and
Lieberman [HL86, pp. 345–350], Holt, Modigliani, Muth and Simon [HMMS60]
and Sasieni, Yaspan and Friedman [SYF59, p. 280].

The work force requirements in a particular factory uctuate due to seasonality
of the demand. The estimated work force requirements during each of the four
seasons for the indenite future are as follows:

Season Summer Fall Winter Spring
Requirements rt r1 210 r2 250 r3 190 r4 260

Due to the undesirability—and costliness—of hiring and ring of the workers,
management wishes to minimize uctuations in work force levels. It is estimated
that the total cost of changing the work force level from one season to the next
is s $100 times the square of the difference in the levels between the two
seasons. For example, if the Summer employment level were 215 people and if an
additional 10 workers were hired for the Fall, the cost of this change in the work
force would be $100 225 215 2 $10000. Any employment level that is
above the levels given in the table is considered a “waste” that costs the company
approximately $1000/person/season. For example, a Summer level of 215
would result in a waste of $1000 215 210 $5000 for that season.

Although this is a problem with an innite number of stages, each year starts
an identical cycle. Since the cost data are assumed to be stationary, we can con-
sider only one cycle of four seasons that end with Spring. We will assume that
the Spring production is the most important and that the management has decided
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to keep the Spring employment level at u4 260. Also, note that since the esti-
mate of 260 for the Spring is the highest, it would not be optimal to increase the
employment level at any season above 260.

We denote the initial Summer season by t 1 and the other periods as t
2 4. If we dene the decision variables ut , t 1 4 as the employment
levels used in period t (with u4 260), it is easy to see that this problem can be
formulated as a nonlinear programming problem. For this problem the objective
function would be

min
4

t 1
[100 ut ut 1

2 1000 ut rt ]

subject to the constraints 210 u1 260, 250 u2 260, 190 u3 260
(and u4 260). If this problem were solved using the techniques of nonlinear pro-
gramming, we would obtain the open-loop decisions as u1 252 5, u2 250,
u3 252 5 and u4 260 with a minimum total cost of $117,500. Fractional
levels such 252.5 are assumed to be acceptable since they correspond to the em-
ployment of part-time workers.

We will now solve this problem with Maple’s help using dynamic program-
ming. Since in the current stage the state (i.e., the available information about the
system) is the previous stage’s decision (i.e., the employment level chosen), we
write xt 1 ut , t 1 2 3 as the state equations with x1 260. This gives
rise to the constraints on the states xt , i.e., 210 x2 260, 250 x3 260,
and 190 x4 260. Dening Vt xt as the value function for stage t—the
minimum cost obtainable for periods t t 1 4—when the optimal policy is
implemented, the DP functional equation becomes

Vt xt min
rt ut r4

[100 ut xt 2 1000 ut rt Vt 1 xt 1 ], t 1 4

with the boundary condition

V4 x4 100 u4 x4
2 1000 u4 r4

100 260 x4
2

since in stage 4 we must have u4 r4 260.
We start by assigning values to the seasonal work force requirements and com-

pute the maximum requirement as R maxt rt 260.

restart: # Manpower.mws

with(linalg):

Warning, new definition for norm

Warning, new definition for trace
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s:=100; w:=1000;

s : 100
: 1000

r:=array(1..4,[210,250,190,260]);
R:=max(seq(r[i],i=1..4));

r : [210 250 190 260]

R : 260
For stage 4 the value function V4 x4 is dened as the boundary condition.

V[4]:=unapply(s*(r[4]-x)^2,x);

V4 : x 100 260 x 2

For stage 3 the recursive relationship is

V3 x3 min
190 u3 260

c3 x3 u3

where c3 x3 u3 100 u3 x3
2 1000 u3 190 V4 x4 . We show that c3

is convex in u3 given x3.
Differentiating c3 with respect to u3 u, equating the result to 0 and solving

gives an expression for u3 (or the policy 3) in terms of the state variable x3 x .
Recall that u3 is feasible in the interval from r3 190 to r4 R 260.

Evaluating the policy 3 at the end points of x3, we nd 3 x3 r2 252 5
and 3 x3 R 257 5. This shows that the policy 3 is in the feasible interval
for any x3; i.e., we have 3

1
2 x3

255
2 for 250 x3 260.

With this information about the optimal u3 we easily compute the value func-
tion V3 x for stage 3.

c[3]:=s*(u-x)^2+w*(u-r[3])+V[4](u);

c3 : 100 u x 2 1000 u 190000 100 260 u 2

cp[3]:=diff(c[3],u); cpp[3]:=diff(c[3],u$2);

cp3 : 400 u 200 x 51000

cpp3 : 400
mu[3]:=solve(cp[3],u);

3 :
1
2
x

255
2

# u[3] is feasible from r[3]=190 to R=260
evalf(subs(x=r[2],mu[3])); evalf(subs(x=R,mu[3]));

252 5000000
257 5000000

V[3]:=unapply(subs(u=mu[3],c[3]),x);
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V3 : x 100
1
2
x

255
2

2 500 x 62500 100
265
2

1
2
x 2

For stage 2, the recursive equation becomes

V2 x2 min
250 u2 260

c2 x2 u2

where c2 x2 u2 100 u2 x2
2 1000 u2 250 V3 x3 . Here the analysis

becomes more complicated.
Differentiating c2 with respect to u2 we get c2 u2 300u2 200x2 24500.

Next, equating this result to zero and solving for u2 we nd the candidate policy
as 2

2
3 x2

245
3 . Now, recall that u2 is feasible in the interval from r2 250

to r4 R 260, but evaluating the policy 2 at the extreme points of x2 we
nd 2 x2 r1 210 221 67 (infeasible) and 2 x2 R 260 255
(feasible).

To nd the range of x2 for which u2 is feasible, we solve 2 250 for x2
and obtain x2 252 5. This shows that the policy 2 applies only in the interval
for x2 from 252 5 to 260. For a given x2 252 5, we nd that c2 is convex and
increasing in u2. Hence, we set 2 250 for x2 252 5. This gives a piecewise
function for the policy 2; see Figure 1.1.

210 260252.5

260

250

221.67

255

x2

u2

F2

Mc2/Mu2 = 0

FIGURE 1.1. The form of the policy 2 x2 .

The value function V2 x2 and c1 are easily computed in terms of the piece-
wise() function. But we suppress the output of these functions in order to con-
serve space.
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c[2]:=s*(u-x)^2+w*(u-r[2])+V[3](u);

c2 : 100 u x 2 1500 u 312500 100
1
2
u

255
2

2

100
265
2

1
2
u 2

cp[2]:=diff(c[2],u); cpp[2]:=diff(c[2],u$2);

cp2 : 300 u 200 x 24500

cpp2 : 300
mu[2]:=solve(cp[2],u);

2 :
2
3
x

245
3

# u[2] is feasible from r[2]=250 to R=260
evalf(subs(x=r[1],mu[2])); evalf(subs(x=R,mu[2]));

221 6666667
255

xLow:=evalf(solve(mu[2]=250,x));

xLow : 252 5000000
xHigh:=evalf(min(R,solve(mu[2]=260,x)));

xHigh : 260
uLow:=subs(x=xLow,mu[2]);

uLow : 250 0000000
uHigh:=subs(x=xHigh,mu[2]);

uHigh : 255 0000000
mu[2]:=piecewise(x<=xLow,r[2],x<R,mu[2]);

2 :
250 x 252 5000000
2
3
x

245
3

x 260

cp[2];

300 u 200 x 24500
assume(210<x,x<252.5,250<u,u<260); is(cp[2]>0);

true
x:=’x’; u:=’u’;

x : x
u : u

V[2]:=unapply(subs(u=mu[2],c[2]),x):
c[1]:=s*(u-r[4])^2+w*(u-r[1])+V[2](u):
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Although we do not present the graph of the c1 function here, we include a
Maple command plot(c[1],u=190..260) that can be used to note that c1
is convex in u1. Thus differentiating this function using the Maple diff() com-
mand and solving gives the optimal numerical value of the rst period’s decision
as u1 252 5. The minimum total cost for all four periods is now easily found as
V1 117500 by substituting the optimal u1 into c1.

#plot(c[1],u=190..260,discont=true);
cp[1]:=diff(c[1],u):
mu[1]:=evalf(solve(cp[1],u)); u[1]:=mu[1];

1 : 252 5000000

u1 : 252 5000000
V[1]:=evalf(subs(u=mu[1],c[1]));

V1 : 117500 0000
The optimal employment levels for the other periods are easily computed as

u2 250, u3 252 5 and u4 260.
x:=mu[1]; u[2]:=mu[2];

x : 252 5000000
u2 : 250

x:=mu[2]; u[3]:=evalf(mu[3]);

x : 250
u3 : 252 5000000

x:=evalf(mu[3]); u[4]:=r[4];

x : 252 5000000
u4 : 260

The following table summarizes the solution.

t 1 2 3 4
rt 210 250 190 260
ut 252.5 250 252.5 260

1.6 A Gambling Model with Myopic Optimal Policy

In his seminal paper entitled “A New Interpretation of Information Rate,” Kelly
[Kel56] considered an unscrupulous gambler who was receiving prior information
concerning the outcomes of sporting events over a noisy communication channel
(e.g., a phone line) before the results became common knowledge. After receiving
the word “win” or “lose”—which he could hear incorrectly due to communica-
tion difculties—the gambler would place his bet (a nonnegative amount up to his
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present fortune) on the original odds. With p as the probability of correct trans-
mission and q 1 p the probability of an incorrect transmission, Kelly showed
using calculus techniques that if p q, the gambler’s optimal wager u (i.e., the
fraction of his capital bet each time) was simply u p q. If p q, then u 0.
He also showed that the maximum growth of capital occurred at a rate equal to the
capacity of the channel given as Gmax log2 2 p log2 p q log2 q. (Interest-
ingly, this was the same result obtained by Shannon [Sha48] from considerations
of coding of information.)

Kelly’s work attracted the attention of a large number of researchers includ-
ing economists, e.g., Arrow [Arr71], psychologists, e.g., Edwards [Edw62] and
applied mathematicians such as Bellman and Kalaba [BK57a], [BK57b], [Bel61]
who extended and reinterpreted Kelly’s results. In particular, Bellman and Kal-
aba re-solved the same problem after formulating it as a dynamic program with a
logarithmic utility function for the terminal wealth of the gambler. They assumed
that the gambler is allowed N plays (bets) and that at each play of the gamble, he
could bet any nonnegative amount up to his present fortune.

In the formulation of the gambling problem using DP we dene Vn xn as the
maximum expected return if the gambler has a present fortune of xn and has
n gambles left. (This is a slight change in notation compared to what we had
used before. In this model n N t is the number of gambles left where n
0 1 N .) At each play, the gambler could bet any nonnegative amount up to
his present fortune and win the gamble with a probability of p. The objective is to
maximize the terminal utility of his wealth which, is assumed to be logarithmic;
i.e., when there are no gambles left, the gambler’s utility of his nal wealth is
V0 x0 log x0 . When n gambles are left, we dene un as the fraction of the
current wealth to gamble with 0 un 1. Then the state equation assumes
the form xn 1 fn xn un n xn unxn n , n 1 N where the
random variable n takes the values 1 or 1 with probability p and q 1 p,
respectively. Thus, the DP functional equation is written as

Vn xn max
0 un 1

E nVn 1 xn unxn n

max
0 un 1

[pVn 1 xn unxn qVn 1 xn unxn ]

with the boundary condition V0 x0 log x0 .
We now describe the DP solution of Kelly’s problem using Maple. Our notation

and exposition closely follow those of Ross [Ros83, pp. 2–4].
First, we show that when p 1

2 , it is optimal not to bet (u 0) and that
Vn xn log xn . Starting with n 1, we see that the c1 function is monotone
decreasing in u, so the optimal decision is to bet 0. (Actually when p 1

2 , setting
u 2p 1 makes c1 constant. But since u 2p 1 0, the statement about
the optimal decision is still valid.) With 1 x1 0, we obtain V1 x1 log x1 .
For other values of n 1, the same solution can be shown to be valid proving
that when p 1

2 , n xn 0 and Vn xn log xn .
restart: # Gamble.mws
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assume(0<=p,p<=1/2): additionally(0<=u,u<=1):
q:=1-p;

q : 1 p
c[1]:=p*log(x+u*x)+q*log(x-u*x);

c1 : p ln x u x 1 p ln x u x
c[1,1]:=normal(diff(c[1],u));

c1 1 :
2 p 1 u

1 u 1 u
is(c[1,1]<=0);

true
V[1]:=simplify(subs(u=0,c[1]));

V1 : ln x
We now turn to the case where p 1

2 .
restart: # Gamble.mws (Part 2)
assume(x>0,p>0);
q:=1-p;

q : 1 p
The boundary condition is the utility of the nal fortune, which is dened as

the logarithmic function in x .
V[0]:=x->log(x);

V0 : log
When there is one play left, we nd that it is optimal to bet 1 2p 1

p 1 p p q fraction of the current wealth:
c[1]:=p*log(x+u*x)+q*log(x-u*x);

c1 : p ln x u x 1 p ln x u x
deriv[1]:=diff(c[1],u);

deriv1 :
p x

x u x
1 p x
x u x

mu[1]:=solve(deriv[1],u);

1 : 2 p 1
The value function V1 x is obtained in terms of logarithms that can be written as
V1 x C log x where C log 2 p log p log 1 p p log 1 p
log 2 p log p q log q .

V[1]:=unapply(expand(simplify(
subs(u=mu[1],c[1]))),x);

V1 : x p ln p ln 2 ln x~ ln 1 p p ln 1 p
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When there are two plays left, the optimal fraction to bet is again 2 p q
with the value function assuming the form V2 x 2C log x .

c[2]:=p*V[1](x+u*x)+q*V[1](x-u*x);

c2 : p p ln p ln 2 ln x u x ln 1 p p ln 1 p
1 p p ln p ln 2 ln x u x ln 1 p p ln 1 p
deriv[2]:=diff(c[2],u);

deriv2 :
p x

x u x
1 p x
x u x

mu[2]:=solve(deriv[2],u);

2 : 2 p 1
V[2]:=unapply(expand(simplify(
subs(u=mu[2],c[2]))),x);

V2 : x 2 p ln p 2 p ln 1 p 2 ln 2 ln x~ 2 ln 1 p
This procedure can be automated to produce similar results.

for n from 3 to 4 do:
c[n]:=p*V[n-1](x+u*x)+q*V[n-1](x-u*x):
deriv[n]:=diff(c[n],u):
mu[n]:=solve(deriv[n],u):
V[n]:=unapply(expand(simplify(
subs(u=mu[n],c[n]))),x):
od;

c3 : p 2 p ln p 2 p ln 1 p 2 ln 2 ln x u x 2 ln 1 p
1 p
2 p ln p 2 p ln 1 p 2 ln 2 ln x u x 2 ln 1 p

deriv3 :
p x

x u x
1 p x
x u x

3 : 2 p 1

V3 : x 3 p ln p 3 p ln 1 p 3 ln 2 ln x~ 3 ln 1 p

c4 : p 3 p ln p 3 p ln 1 p 3 ln 2 ln x u x 3 ln 1 p
1 p
3 p ln p 3 p ln 1 p 3 ln 2 ln x u x 3 ln 1 p

deriv4 :
p x

x u x
1 p x
x u x

4 : 2 p 1

V4 : x 4 p ln p 4 p ln 1 p 4 ln 2 ln x~ 4 ln 1 p
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Using induction, it can then be shown that when p 1
2 the optimal policy is

to bet n p q fraction of the current wealth at any stage of the game. This
gives rise to a value function that is in the form Vn x nC p log x where
C p q ln q p ln p ln 2 .

One of the most interesting features of this problem is the nature of its solution:
The optimal strategy is myopic (invariant) in the sense that regardless of the num-
ber of bets left to place n and the current wealth x , the optimal (nonnegative)
fraction to bet in each period is the same, i.e., u p q when p 1

2 and u 0
when p 1

2 . Optimal myopic policies of this type are usually difcult to obtain,
but they exist for some models. For example, in some periodic-review inventory
problems with random demand it has been shown that provided that some termi-
nal cost is appended to the objective function, the optimal order quantity is the
same for all periods; i.e., the policy is myopic (Veinott [Vei65], Heyman and So-
bel [HS84, Chapter 3]). In some dynamic portfolio problems (Mossin [Mos68],
Bertsekas [Ber95, pp. 152–157]) myopic policy is also optimal provided that the
amount invested is not constrained and the investor’s utility function satises cer-
tain conditions.

In a recent paper, Çetinkaya and Parlar [ÇP97] argue that the assumption of
the simple logarithmic function in the Kelly-Bellman-Kalaba model is somewhat
unrealistic and that the problem should ideally be solved with a more general log-
arithmic utility function. They thus assume that, in general, the gambler’s terminal
utility is given as V0 x log b x where b is a positive constant. This gener-
alization results in the disappearance of the myopic nature of the solution and the
optimal strategy assumes a form that depends on the stage n and the state x of
the gambling process.

1.7 Optimal Stopping Problems

Let us suppose that a professor has N days to leave a country where he has spent
the past year on sabbatical. Before leaving the country he wants to sell his car and
hence places an advertisement in the local newspaper.

After the publication of the advertisement each day he receives random offers
0 1 N 1, which are independent and identically distributed. If the pro-

fessor accepts an offer, then the process ends; however if he rejects the offer, he
must wait until the next day to evaluate the next offer. We assume that offers that
are rejected in the past are not retained—the potential buyer goes elsewhere. (For
the case where past offers are retained, see Bertsekas [Ber95, p. 173].) The prob-
lem is to nd a policy that will maximize the professor’s revenue when he leaves
the country.

Problems of this type are known as stopping-rule problems and their origin can
be traced back to Wald’s research on sequential analysis in the 1940s [Wal47].
For later surveys of stopping-rule problems see Breiman [Bre64] and Leonardz
[Leo74]. The second part of Howard’s delightful review of dynamic program-
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ming [How66] discusses an elementary stopping-rule problem (called an “action-
timing” problem by Howard). For a rigorous exposition of the theory of stop-
ping rules, Chow, Robbins and Siegmund [CRS71] can be consulted. Applica-
tions in economics of job search are discussed in Lippman and McCall [LM76a],
[LM76b].

We let xt t 1 be the state variable at the beginning of period t (or, equiv-
alently, at the end of period t 1). Dening Vt xt as the value function, the DP
functional equation is obtained as

Vt xt max xt if the decision is to accept the offer of t 1
E[Vt 1 t ] if the decision is to reject the offer of t 1.

Note that if the last offer t 1 is accepted, then at the start of period t , the pro-
fessor will have a revenue of xt and the process will “stop.” If the offer is re-
jected, then Vt xt is equal to the expected value of continuing optimally in peri-
ods t 1 t 2 N , i.e., E[Vt 1 t ] 0 Vt 1 dF where F is
the distribution function of the offer .

Thus, the optimal policy is to accept the offer xt t 1 in period t if xt
exceeds a critical threshold level of t E[Vt 1 t ] and reject the offer if it
falls below t , i.e.,

t xt
Accept if xt t
Reject if xt t

(1.6)

with either acceptance or rejection being optimal if xt t . Hence the value
function is Vt xt max xt t . Note that since x0 0, we have V0 0
max 0 0 0.

As the threshold value t at time t is obtained in terms of E[Vt 1 t ], we
can develop a difference equation in terms of this value and compute t , t
0 1 N recursively using Maple.

To obtain the difference equation, we write

t E[Vt 1 t ] E[max xt 1 t 1 ] E[max t t 1 ]

t 1
t 1

0
dF

t 1

dF

t 1F t 1
t 1

dF

with the boundary condition being N 0 (since the professor would be willing
to accept any offer on his last day). Thus, the threshold levels are found as the
solution of the nonlinear difference equation

t t 1F t 1 A t 1 t 0 1 N 1

with A t 1 t 1
dF and N 0. We now discuss some special cases

where the distributions of the random variables assume specic forms.
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As a simple example, assume rst that the professor has N 5 days to leave
the country and his departure is scheduled for next Friday morning. Thus the
process of receiving offers starts on day t 0 (Sunday) and the rst decision is
made on Monday morning. If we assume that the offers are distributed uniformly
between 0 and 1, then their density is f 1 for 0 1. With these
data we nd F t 1 t 1 and A t 1

1
2

1
2

2
t 1 which gives rise to the

following difference equation:

t
1
2

1 2
t 1 , t 0 1 4 N 0.

Unfortunately, Maple is unable to solve this nonlinear difference equation in
closed form with the rsolve() function:

restart: # UniformDP.mws
rsolve({theta(t) = (1/2)*(1+(theta(t+1)^2)),
theta(5)=0},
theta);

rsolve t
1
2

1
2

t 1 2 5 0

However, the t values for t 0 1 N 1 can easily be computed numer-
ically as follows.

restart: # UniformDP.mws (Part 2)

Digits:=4:

f:=w->1; # Uniform w

f : 1

N:=5; theta[N]:=0;

N : 5

5 : 0

for t from N-1 by -1 to 0 do:

F[t+1]:=int(f,w=0..theta[t+1]):

A[t+1]:=int(w*f,w=theta[t+1]..1):

theta[t]:=evalf(theta[t+1]*F[t+1]+A[t+1]):

od:

seq(theta[t],t=0..N-1);

7751 7417 6953 6250 5000
Thus, we see that at the start of the process, the professor expects to gain 0.7751

monetary units if he uses the optimal policy t xt that is prescribed in (1.6).
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1.7.1 The Innite-Stage Problem
What happens if the horizon N is large? Does the sequence t approach a limit
for large N? We now examine these issues.

First note that for large N , we must discount the future rewards, or the thresh-
old levels would approach the maximum possible value attainable by the random
variable representing the offer. For example, for the uniform example we would
have t 1 as N gets large. This would be a strange result since in that case the
optimal policy would not allow accepting any offers.

Now using discounting and assuming that 1 1 r is the discount factor per
period, we can write Vt xt max xt 1 r 1E[Vt 1 t ] , t 0 1 N
1, with VN xN xN , which gives t 1 r 1E[Vt 1 t ]. It can then be
shown using induction that [Ber95, p. 161]

Vt x Vt 1 x for all x 0 and t .

Since t 1 r 1E[Vt 1 ], we obtain t t 1. This means that as the
end of horizon gets one period closer, the professor would be willing to accept
a lower offer since he has one less chance of getting an improved offer. For the
discounted case, the nonlinear difference equation assumes the form

t 1 r 1F t 1 1 r 1A t 1 , t 0 1 N 1.

Now, 0 F 1 for all 0 and 0
t 1

dF E offer for
all t . Thus, using the property that t t 1, we obtain an algebraic equation in
terms of a constant whose solution would give us the limiting value of :

1 r F dF .

For the uniformly distributed offers with a discount rate of r 0 10, the limit-
ing result is obtained simply as the solution of a quadratic equation:

restart: # UniformDP.mws (Part 2)
r:=0.10;

r : 10
F:=theta;

F :
A:=int(w,w=theta..1);

A :
1
2

1
2

2

Asy:=(1+r)*theta=theta*F+A;

Asy : 1 10
1
2

2 1
2

solve(Asy,theta);
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6417424305 1 558257570
Thus, we obtain 0 641 as the number of opportunities (periods) to receive

offers approaches innity.
Let us now consider a more general case where the offers have a beta distribu-

tion so that the density f assumes the form

f
a b
a b

a 1 1 b 1, for 0 1

where y is the gamma function dened by y 0 uy 1e u du. It is well
known that when y is a positive integer, we obtain y y 1 !, and that
when a b 1, the beta density reduces to the uniform so that f 1 for
0 1.

The Maple output for a 5 and b 2 follows where for N 5, we compute
the threshold levels t , t 0 1 4.

restart: # BetaDP.mws
Digits:=3;

Digits : 3
a:=5; b:=2;

a : 5
b : 2

Mean:=a/(a+b);

Mean :
5
7

f:=GAMMA(a+b)/(GAMMA(a)*GAMMA(b))*
w^(a-1)*(1-w)^(b-1);

f : 30 4 1
N:=5; theta[N]:=0;

N : 5

5 : 0
for t from N-1 by -1 to 0 do;
F[t+1]:=int(f,w=0..theta[t+1]);
A[t+1]:=int(w*f,w=theta[t+1]..1);
theta[t]:=evalf(theta[t+1]*F[t+1]+A[t+1]);
od:
seq(theta[t],t=0..N);

838 830 806 765 714 0
We nd the limiting value 0 704 (with r 0 10) as the unique real valued

root of a polynomial of degree 5:
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restart: # BetaDP.mws (Part 2)
Digits:=3;

Digits : 3
r:=0.10;

r : 10
a:=5;b:=2;

a : 5
b : 2

f:=GAMMA(a+b)/(GAMMA(a)*GAMMA(b))
*w^(a-1)*(1-w)^(b-1);

f : 30 4 1
F:=int(f,w=0..theta);

F : 5 6 6 5

A:=int(w*f,w=theta..1);

A :
5
7

30
7

7 5 6

Asy:=(1+r)*theta=theta*F+A;

Asy : 1 10 5 6 6 5 5
7

30
7

7 5 6

fsolve(Asy,theta);

704

Compared to the limiting case 0 641 obtained for uniformly distributed
offers (with mean 1/2), the beta-distributed offers with a mean of a a b 5 7
have higher threshold levels. This should be expected since with the higher mean
of the latter case, the decision maker can afford to be picky and reject offers that
are not high enough.

1.8 Summary

Dynamic programming (DP) is useful in solving different types of sequential de-
cision problems with Bellman’s principle of optimality. We started this chapter
by introducing a simple discrete-time, discrete-state sequential decision problem
known as the stagecoach problem. Sequential decision problems with a quadratic
performance criterion and a linear system normally give rise to closed-form so-
lutions that may require an iterative process of solving a sequence of recursive
equations. Using Maple’s symbolic manipulation capabilities, we were able to
develop closed-form solutions for a large class of such problems. A nite horizon
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workforce planning problem with constraints was solved with the help of Maple’s
piecewise() function. A gambling problem modeled using stochastic DP was
solved that gave rise to a myopic policy. Finally, optimal stopping problems were
considered where the stopping boundary was computed by solving a nonlinear
difference equation numerically.

1.9 Exercises

1. Consider the following road network where a driver can travel only on the
one-way streets as indicated by arrows. The driver starts at the intersection
labelled “A” and must reach the nal destination at the intersection labelled
“H”. The travel distances between any two intersections are indicated next
to the arrows. Dene the states and decisions and nd the optimal route for
the driver.

A 5 D 3 E 7 H
3 6 1 2
B 8 C 2 F 3 G

2. Suppose we are given a positive quantity x . Use dynamic programming
to divide x into n parts in such a way that the product of the n parts is
maximized.

3. Consider the following optimization problem:

min J
N

i 0
qx2
i ru2

i qx2
3

subject to the state dynamics

xi 1 axi bui , i 0 N 1

where N 2, q 2, r 4, a 1 and b 0 5.

(a) Use dynamic programming to solve this problem.

(b) The same problem appeared as a nonlinear programming problem in
Exercise ?? of Chapter ??; see page ??. Comment on the nature of the
solution produced by the two approaches.

4. Consider the problem of minimizing J t 0[u2
t xt ut 2] subject

to the state dynamics xt 1 a xt ut with 0 a 1 and 0 un xn ,
n 0 1 2 . Find the optimal policy and the value function for this
innite-stage problem.
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5. Use the Hamilton-Jacobi-Bellman equation to minimize the performance
criterion J 1

4 x
2 T T

0
1
4u

2 t dt subject to the state dynamics x t
x t u t where T .

6. Suppose we need to purchase a particular commodity within the next N
days. Successive prices t for this commodity are random and i.i.d. with
density f t . Determine an optimal policy to purchase this commodity
in order to minimize the expected cost assuming that t are distributed
uniformly between 0 and 1.

7. Consider a machine whose probability of failure depends on the number of
items it has produced. Assume that if the machine fails while producing an
item, there is a repair cost of c f . The machine can be overhauled before it
fails at a cost of co c f . If the machine is repaired or overhauled, then it is
considered good as new. After the production of each unit we may decide
to overhaul the machine or attempt to continue with the production of the
next unit.
Dene Vn x to be the minimum expected cost of producing n more units
when the machine has already produced x parts. Let p x be the proba-
bility of the machine failing while producing the x 1 st unit given that
it already has produced x units. Develop the DP functional equations for
Vn x and use the following data to compute V1 x V2 x V6 x for
x 0 1 2 5.

p 0 p 1 p 2 p 3 p 4 p 5 co c f
0 0.2 0.3 0.5 0.8 1.0 1 2

8. A set of items is called “group-testable” if for any of its subsets it is possi-
ble to perform a simultaneous (group) test on the subset with an outcome of
“success” or “failure”; see Bar-Lev, Parlar and Perry [BLPP95]. The “suc-
cess” outcome indicates that all the tested units are good, and the “failure”
outcome indicates that at least one item in the tested subset is defective
without knowing which (or how many) are defective.
In industrial problems that involve, e.g., the identication of good electronic
chips in a large batch that contain good and bad ones, chips of 100% quality
cost much more than the chips of 100q% quality where q is a positive
constant that is usually greater than 0.9 but strictly less than 1.
Let K be the set-up cost for each test, u be the group size decision variable,
D be the requirement (demand) for 100% quality items, N be the number of
100q% units purchased. Dene the state variables x as the number of units
of demand that is yet to be satised, y be the number of untested units. Let
q be the probability that a given unit in the group is “good” and be the
unit cost of having a shortage of 100% quality items after the testing ends.
Dene V x y as the minimum expected cost (until the process terminates)
when we are currently at state x y and an optimal policy is followed until
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termination. Write down the DP functional equation for the value function
V x y and solve the problem using the following data:

D N K q
3 5 20 100 0.95
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