Adjusted R-squared $R_{\text {Adj }}^{2}$ is obtained from the (ordinary) Multiple R-squared R^{2} as,

$$
R_{\mathrm{Adj}}^{2}=\left(R^{2}-\frac{k}{n-1}\right)\left(\frac{n-1}{n-(k+1)}\right),
$$

where n is the number of observations and k is the number of independent variables.
In the first regression example (Sales vs. Advertising), we have $n=25, k=1$, so $R^{2}=0.24$, and $R_{\text {Adj }}^{2}=0.21$. (Check Rcmdr.)

Adjusted version is the preferable one, especially in multiple regression problems.
Why? Because, every time you add a new variable (even if it is not related to the problem at hand), the ordinary R^{2} goes up. The adjusted one deflates the ordinary one by a suitable amount.

Note that if $R^{2}=1$, so is $R_{\text {Adj }}^{2}=1$, as it should be.

