Adjusted R-squared $R_{\rm Adj}^2$ is obtained from the (ordinary) Multiple R-squared R^2 as,

$$R_{\rm Adj}^2 = \left(R^2 - \frac{k}{n-1}\right) \left(\frac{n-1}{n-(k+1)}\right),$$

where n is the number of observations and k is the number of independent variables.

In the first regression example (Sales vs. Advertising), we have n = 25, k = 1, so $R^2 = 0.24$, and $R^2_{Adj} = 0.21$. (Check Rcmdr.)

Adjusted version is the preferable one, especially in multiple regression problems.

Why? Because, every time you add a new variable (even if it is not related to the problem at hand), the ordinary R^2 goes up. The adjusted one deflates the ordinary one by a suitable amount.

Note that if $R^2 = 1$, so is $R^2_{Adj} = 1$, as it should be.