Introduction

It was the World Wide Web that opened the door for electronic commerce (EC) in the business-to-consumer (B2C) environment and created a new business line, called electronic retailing, e-tailing or electronic shopping. Individuals can now search information and shop online for virtually everything they need. Electronic shopping can bring convenience, competition, new channels for information, and new models for marketing. It opens opportunities for both marketers and customers (Turban et al., 2000; Wang et al., 2000).

Central to electronic retailing are Web-based information systems (WIS). On the Internet, retailers and consumers interact through WIS which function as virtual stores. Research shows that the use of WIS can enhance competitiveness by supporting the traditional means by which companies compete, such as lowering costs, focusing on specific customer groups, or differentiating their products and services (Lederer, 1998). WIS may also provide many new opportunities for companies, such as expanding the customer base, providing new products and services, and creating new lines of business.

WIS also create new challenges for e-tailers. Compared to traditional information systems, WIS can reach a wider audience and their users tend to have less system knowledge/training. WIS may also introduce new managerial and technical challenges, and guidelines for their design and development have not yet been well established (Isakowitz et al., 1998; Gregor et al., 1999).

This paper address WIS design and development issues for commercial applications, and is organized as follows. A literature review examines WIS classifications and features. Based on this review, we propose a new model to examine WIS in an e-retailing context. According to this model, issues and challenges pertaining to users and consumers, business determinants and the business interface, are discussed. Finally, we present some thoughts for future WIS research.

Literature review

A WIS refers to a Web-based information system, or a Web information system, which is
an information system based on Web technology (Isakowitz et al., 1998). A Web presence is generally a part of a WIS and Web browsers serve as a common interface. Web technologies, such as related protocols and standards, may support the basic functions of the system.

WIS have become more pervasive and a basis for e-tailing. Based on Web technology, WIS have the potential to:

- reach a broad audience;
- provide rich content and information in a user-friendly interface;
- operate at a lower cost than systems on proprietary networks; and
- seamlessly integrate with other systems to support business processes.

With increased bandwidth and improved reliability, more businesses are relying on the Web and building WIS.

Classifications

Isakowitz et al. (1998) classify WIS into four general categories:

1. Intranets, to support internal work;
2. Web-presence sites that are marketing tools designed to reach consumers outside the firm;
3. EC systems that support consumer interaction, such as online shopping; and
4. extranets, a blend of internal and external systems to support B2B communication.

However, in current business development and industry practice, Web-presence sites are not clearly differentiated from EC systems, since marketing sites may often need to support consumer interaction. A customer-oriented WIS is usually designed as both a Web-presence marketing tool and a customer interaction tool.

WIS can also be classified according to business functionality. Electronic commerce can be divided into business-to-business (B2B), business-to-consumer (B2C), consumer-to-consumer (C2C), consumer-to-business (C2B), non-business EC, and intra-business EC (Turban et al., 2000). A WIS that is designed to support electronic shopping is typically viewed as a B2C application. However, this system may also provide a forum to develop a virtual community (C2C) and may be coupled with and supported by systems that connect to suppliers (B2B) and internal operations (intra-business). Business functions, and the systems that support them, are often closely connected and difficult to separate.

As shown in the above classifications, a WIS may serve multiple functions to multiple users. We suggest it is difficult to separate these systems into distinct classifications or categories. Instead, it may be more appropriate to examine the types of WIS according to the users they serve and the types of exchange they support, where any particular WIS may fall into several groupings. Table I illustrates some example WIS systems along the dimensions of primary “users” and “interactions”, and some of these examples are briefly discussed below. This discussion outlines sample systems and is not meant to be a comprehensive listing of all WIS systems.

- **Intranets**: support the internal business of organizations. Intranets support interactions and exchange of information among users and can assist in coordinating cross-functional group work (Archer and Yuan, 2000).
- **Extranets**: support B2B transactions and information exchange. A conceptual framework for understanding extranet implementation guidelines is provided by Angeles (2001).
- **E-tailing sites**: support B2C information searching and electronic shopping. Phau and Poon (2000) investigate the types of products and services that are suitable for selling through e-tailing sites.
- **Consumer marketplaces**: consumers interact with each other (C2C) or other businesses (C2B) in order to buy or trade products or services. Pricing strategies may include auctions, reverse actions, dutch auctions,

<table>
<thead>
<tr>
<th>Table I Example WIS systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interaction</td>
</tr>
<tr>
<td>Transactions</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Information sharing</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
and collaborative purchasing or exchanges (for details, see Reynolds, 2000).

- **Virtual communities**: online communities of interest. The interpersonal dynamics of these groups are increasingly coming under the scrutiny of academic research (King, 1996).

- **Corporate portals**: single-point Web browser interfaces used within an organization to promote the gathering, sharing, and dissemination of information throughout an enterprise (Detlor, 2000). Portals have arisen due to the proliferation of departmental-based Web sites and the desire to provide employees with both internal and external company-related information (Choo et al., 2000).

- **Hubs**: B2B electronic marketplaces. Hubs, which bring together multiple buyers with multiple sellers, are proliferating across many industries (for specific B2B hub examples and characteristics see Archer, 2001).

This paper focuses on e-tailing WIS. However, as shown in Table I, the successful support of external customers may require employing various WIS to form an integrated interaction network.

Features

Many features and characteristics of WIS have been discussed in the literature (Bimbo, 2000; Grosky, 1997; Isakowitz et al., 1998; Gregor et al., 1999). For example, WIS characteristics outlined by Gregor et al. (1999) include: distributed and diverse users; reliance on the Internet platform with accompanying technologies, standards and tools; reliance on hypermedia for linkage mechanisms; and the existence of common interface(s) in the form of Web browsers. While authors may present WIS characteristics somewhat differently, two common and distinguishing features are “super-connectivity” and hypermedia (Bimbo, 2000; Grosky, 1997; Isakowitz et al., 1998). Super-connectivity refers to the strong power of WIS for connection and interaction. They strive to provide close connections between users, between users and systems, and between systems, which are critical for information integration and distribution, and for business models that emphasize customers. It addresses the superior ability of WIS to transmit information and support communication and eventually interconnect all people and organization globally (Isakowitz et al., 1998). Due to the super-connectivity characteristic of WIS, diverse users performing heterogeneous tasks are expected.

Hypermedia, another common WIS feature, has two aspects: hyperlinks and multimedia. Hyperlinks provide the connection among related content or sites. A site structure can be implemented through a well-designed link network. Hyperlinks provide many advantages, such as ease of implementation and scalability in a networked environment (Andrews, 1996). However, hyperlinks may also pose several challenges for WIS development and use (Andrews, 1996). For example, users may become disoriented as they lose their sense of location and direction in a nonlinear document (Utting and Yankelovich, 1989). This “getting lost in space” problem arises from the need to know where one is in the network, where one came from, and how to get to another place in the network (Balasubramanian, 1994). Nielsen (1990) suggests that this is one of the major usability problems with large-scale hypermedia environments such as the Web. From the developer’s point of view, it may be very challenging to manage a complex link structure and keep link references relevant and up to date. A more complete discussion on the challenges of large-scale hyperlink systems is provided in Head et al. (2000). Multimedia is used to provide information through various media, such as graphics, audio and video, in addition to text. Information can be presented to more closely match its existence in the real world. For example, travel sites may offer short videos to illustrate their vacation destinations. By interacting with multimedia applications, users may receive information more efficiently and effectively and evaluate alternatives more appropriately.

WIS in e-tailing

As with most systems, WIS must consider both business and technology issues. While having the right technical components is important to
constructing a successful system, companies need to understand the business implications of their WIS. Various critical elements need to be considered when designing a WIS for business success. Many existing works discuss these critical elements, but most examine WIS within specific problem domains (Denning et al., 1998; Silva et al., 2000) or within specific developmental stages (Fielding et al., 1998; Lenz and Oberweis, 2000; Lenz et al., 2000). For example, Lenz and Oberweis (2000) present a page link scheme to guide construction of link models. Denning et al. (1998) discuss interface design principles. Nielsen (1993) discusses IS usability through users’ characteristics and requirements and Shneiderman (2000) addresses the importance of unified user interfaces. Scott-Morton (1986) presents the concept of fulfilling business requirements through IS design.

In general, more active research can be found in the technology development area than from the business design perspective, and the two topics are approached separately. In practice, the technology and business requirements for WIS are often related. However, to the best of our knowledge, an abstract overall view for WIS design has not been reported in the literature. For businesses to develop commercial applications, an integrated and overall view is more critical than mastering advanced techniques in a special domain, since it provides the foundation to understand WIS requirements and features for commercial success. This paper presents such an integrated and overall model (shown in Figure 1), which addresses various business aspects that may pose requirements and constraints for WIS and examines their inter-effects. The model in Figure 1 investigates WIS in the e-tailing context through four interconnected layers:

1. business determinants;
2. WIS;
3. business interface; and
4. users/customers.

This paper closely examines the users/customers, business determinants, and business interface components of our model. WIS development is also a significant issue; however, its functional requirements and design constraints primarily generate from the other three layers. Although the following discussion focuses on customer oriented WIS, the features and analysis presented may also be applied to WIS that have different types of users and interactions.

Users/customers

WIS are user centered since users are the main purpose for such systems. In e-tailing, users and customers are related but different concepts. User should be defined to include anybody whose work is affected by the product in some way, including users of the system’s end product or output that have never interacted with the electronic screen-front (Nielsen, 1993). WIS users may include consumer and business customers, business partners, personnel in the e-tailing business, and other people who are affected by the integrated WIS. In this section we outline some potential differences between online and traditional retail customers, and between WIS and traditional IS users.

Online vs traditional retail customers

Surveys (e.g. Shneiderman, 2000) show that the gap in Internet usage has been declining between men and women, and among different age groups. However, online customers still represent a distinct group with higher income and education. In making their decisions, they search the Web for information and explore lower prices and higher value. They have more access to information and thus possess more market knowledge. They actively exchange information with other customers. They may evaluate products and purchase online or offline. Online customers may also have different decision-making processes using different evaluation criteria that may rely on electronic tools.

Online customers may have different price sensitivity, compared to traditional retail customers. Alba et al. (1997) propose that when quality-related information is important to customers and brands are differentiated, interactive retailing could lead to lower price sensitivity. Degeratu et al. (1999) found that online promotions, which are indicators for price discounts, lead to higher price sensitivity.
Shankar et al. (1999) also identify the effects of various online characteristics on customer price sensitivity.

Obviously, online customers can be highly affected by the design of WIS. The interface characteristics of a WIS, such as color, may impact customers’ emotions. Customer trust may also be influenced by WIS design features (Head et al., 2000). Lynch and Ariely (2000) show that lowering search costs through effective navigation design in WIS may alter a customer’s decision-making criteria.

As outlined, electronic shoppers may possess different characteristics than traditional retail customers. However, the nature of the electronic shopper will continue to evolve. For example, the “Net generation” refers to the generation born after 1977 (Chen, 2000), who grew up with and spent the majority of their learning years with the developing Web. Understanding the Net generation is critical to understanding the future of e-tailing and still requires tremendous effort.

WIS vs traditional IS users

Table II compares user characteristics for traditional IS and for WIS. The users of WIS have broad demographic characteristics, and can access several WIS at the same time or through the same browser. For example, users may open two related Web sites simultaneously to compare content. Users may access WIS for different purposes: business or personal reasons; information seeking or entertainment; searching purposely or browsing through link traversal. Meanwhile, they come from different computer and network environments. Their network speeds, monitor size and resolution, browser types, computer configuration, etc., differ and affect their WIS visit. Users do not have to be skilled or well trained. Gaps exist in user knowledge, either in computer and Web experience or in the information content domain. While users of traditional IS are generally trained and supported by a technical department, users of WIS may be novices and may not have sufficient or timely support.

<table>
<thead>
<tr>
<th>Table II Comparison of traditional IS and WIS users</th>
</tr>
</thead>
<tbody>
<tr>
<td>Users of traditional IS</td>
</tr>
<tr>
<td>User capacity at a time</td>
</tr>
<tr>
<td>User domain</td>
</tr>
<tr>
<td>User requirements</td>
</tr>
<tr>
<td>Expectation for both users/developers</td>
</tr>
<tr>
<td>Skills</td>
</tr>
<tr>
<td>Purpose</td>
</tr>
<tr>
<td>Technical platform</td>
</tr>
<tr>
<td>Interaction requirement for system-to-user/user to user</td>
</tr>
<tr>
<td>Usage environment</td>
</tr>
</tbody>
</table>
Domain knowledge determines how well users can understand the information of interest, which poses the question of how much information detail should be presented. While both frequent and infrequent users may have high performance requirements, their needs may vary significantly. These user characteristics of WIS pose different system requirements.

Figure 2 examines user experience along three dimensions: general computer knowledge, expertise with the specific system, and understanding of the task domain (Nielsen, 1993). Users of WIS may fall anywhere along these dimensions and users with different attributes demand different features in WIS. For example, an interface designed for users with extensive domain knowledge can use specialized terminology and can have a more information dense layout. Users with little domain knowledge will require an interface that explains system functionality, does not abbreviate terminology and does not show information as densely.

Figure 3(a) depicts learning requirements for novice and expert users in system expertise. Systems for novice users should be easy to learn but may be less efficient to use. Systems for expert users may be harder to learn but highly efficient after learning. Figure 3(b) illustrates the learning requirements for WIS. Due to user differences and commercial incentives, WIS pose higher requirements for the system-learning curve. First, usage proficiency and

Figure 2 The three main dimensions on which users’ experience differs

Figure 3 (a) Learning requirement and (b) learning requirement for WIS

Source: Adapted from Nielsen (1993)
efficiency at time zero should not be zero since most users would find it difficult to use a system in an environment that has little training and most users are individual-based. WIS are viewed through Web browsers, which are user friendly and a familiar environment for most users. Second, the outer edges of the two curves are combined to form an efficiency frontier, which represents WIS requirements. WIS should be easy to use and efficient since WIS users vary from novice to expert users.

In addition, the interactivity requirements for WIS are usually high. The system needs to support various search or transaction tasks through multimedia presentation, and high speed feedback is expected. For commercial purposes, the system must be easy to use and highly efficient and powerful to carry out required tasks.

Business determinants

Many business factors can affect WIS design. Gregor et al. (1999) discuss system context, relevant development methodologies, hypermedia and implementation issues. Organizational issues require careful attention and are shown to be the factors leading to most system implementation failures (Gregor et al., 1999). Rockart and Scott-Morton (1984) point out that the impact of information technology is conditioned by the personality of the company. This personality is defined by several characteristics such as the structure and organizational culture, the strategy, the processes and methods of transaction, the human potential and their roles, as well as the actual possession of technology (Straub and Wetherbe, 1989; Tam, 1992). In this paper, we simplify these characteristics to three main business aspects that determine WIS design requirements, constraints and potential success: (1) business strategy (characteristics: strategy; human potential and their roles); (2) operations (characteristics: processes and methods of transaction; structure and organizational culture); and (3) technology factors (characteristics: actual possession of technology).

These three business determinants can help answer the following questions: what is the purpose of the WIS; what are the main functions and other features of the WIS; and what technologies and tools should be employed. As shown in Figure 1, in the top-down view, the business strategy decides feasible operations, and requirements of business strategy and operations decide technology needs. In the bottom up view, the technology employed will support efficient operations, and successful operations will help fulfill business goals.

Business strategy

Business strategy deals with long-term planning and goal settings, such as its industry/distribution channel position, products, business line, competitive advantages, etc. Business strategy directly affects WIS design and development, the business interface and user/consumer groups, in several ways as described below.

New strategies and business models have emerged with the employment of the Web. For example, “pure-play Internet business” has emerged, where all business communications and transactions are conducted through WIS. Traditional businesses can also design WIS for marketing, service or transaction purposes to form a “click-and-brick” business. The click-and-brick spectrum may range from integration to separation, including in-house divisions, joint ventures, strategic partnerships, and spin-offs (Gulati and Garino, 2000).

Business strategies will affect the construction of WIS by posing requirements and constraints. For example, in an integrated click-and-brick business, WIS may simply be a layer on top of existing information systems (Gulati and Garino, 2000). In this case, WIS design has to comply with the existing IS and business interfaces. On the other hand, if an online business is further separated from its “brick” counterpart, the WIS may be more independent from existing information systems and possess unique strategic requirements. Businesses dealing with products that are easy to evaluate online may have a less complex WIS than businesses with products that are more difficult to evaluate. Competitive strategies will also affect the appropriateness of WIS features.
Retailers focusing on low price offerings may require simpler WIS functionality than retailers focusing on service. For example, Amazon.com provides service through its recommendations, book reviews and reminders, while other discount book sellers may only allow consumers to search their database for book availability and pricing.

Business strategies will also define the business interface by affecting feasible business models. Online stores may directly compete with or complement traditional stores. It is the strategy that determines the level of business integration. Furthermore, business strategies will directly affect WIS user groups and will help define their expectation and requirements. For example, a strategy that focuses on high quality products will draw customers that may not be as price-sensitive but expect superior service. The customer group, determined by the business strategy, will pose requirements for WIS functionality.

Operations

Operations implement business strategies at a detailed level. Due to the advantages the Web brings to business, such as digitized information, it is feasible and necessary in many cases to integrate business operations and related information systems to support competitive advantage. Businesses are trying to integrate their information flows to form a seamless chain, which involved managing the following relationships:

- relationships with business partners and suppliers;
- relationships with customers;
- relationships among employees; and
- relationships among customers.

As previously shown in Table I, various types of WIS can be employed to help manage these internal and external relationships.

Depending on the business model and strategy employed, e-tailers may differ in how they interact with their business partners and suppliers. As one extreme, Garden.com (www.garden.com) has no inventory and does not handle products, but deals with customers and the market for its suppliers. Information from customers is sent directly to suppliers and products are delivered by carriers. In this way, e-tailers can become more specialized with lean operations. However, smooth co-operation among e-tailers and suppliers becomes critical. The expansion of the e-tailing business will boom the business of its suppliers and the high quality products and services provided by suppliers will become the core of e-tailer success (Welles, 1999). On the other hand, any mistake by its suppliers and carriers will directly and adversely affect the e-tailing business. Customers will usually blame the e-tailer directly for such mistakes. While customers tend to behave individually in traditional retailing, they can group into virtual communities that become powerful forces in e-tailing. Customers can more easily and quickly share information, knowledge, experiences and views with each other in the Web environment. These communities can become critical to the success or failure of an electronic retail business, and marketers must be aware of their implications.

As previously discussed, various levels of integrated retail/distribution channels can exist. There are operational implications for the click-and-brick model. Virtual stores have some advantages over traditional brick and mortar stores. While virtual stores can achieve lower costs and collect more business information due to their WIS-base and lean operations, brick and mortar stores can have better local market knowledge, provide quicker response, and supply the security and trust that may be missing in a virtual environment. Integration of operations may also pose special requirements for WIS design. Integrated retailing channels will require consistent design and mutual business support. For example, consumers should be able to redeem electronic coupons in traditional stores, and easily return products that were bought online to a physical store.

Operations will pose system requirement for WIS and decide functional connections with other WIS. Operations will also affect the business interface including the interface with other WIS and non-Web business interface. For example, the results from operations can generate opinions/comment from users and business information in other WIS. Operations do not directly determine customer groups but affect the group through interaction.
Fast developing technologies in broadband network communications are providing more and more communication bandwidth and capacity. This will make it possible to transmit mass multimedia data instantaneously to individual households. For example, asymmetric digital subscribe line (ADSL) technology is already in place in many areas. Its data rate (up to 1.5Mbps) is much more than traditional dial-up (up to 56Kbps) and residential ISDN (128Kbps) connections (Bingham, 2000). However, as more and more households begin to use the Internet as a primary tool in their daily life for information seeking and electronic commerce transactions, more technological challenges, such as network routing, topology, and server throughput, are still ahead. Better compression technology and more bandwidth are still needed. Currently, to transmit HDTV quality, the multimedia information data rate needs to be least 4.5Mbps. Wireless and satellite communication is also in high demand. However, the error-pruning environment and time-varying noisy nature of wireless channels pose many technical challenges to signal processing and communication system engineers. Business managers and WIS designers must select suitable technologies according to the requirements of business operations and strategy. Technology factors will directly determine the success of WIS implementation and affect users/customers through interaction. Technology selection will also determine the design of a WIS interface and affect its usability. The requirements for WIS may vary from providing basic text information (for information based WIS), to exploring transaction based customer interaction (for customer oriented WIS for products that are easy to value), to supporting effective product evaluation and decision making (for customer oriented WIS for products for which evaluation depends on multi-sense inputs). Generally, the more complex the requirement, the more advanced technology that is needed, and the more carefully designers should consider WIS usability and users/customers capabilities (bandwidth and learning curve). Due to technology limitations, WIS may not be able to fulfill all business requirements. For example, high interactivity and multimedia requirements
will slow transmission speeds. For a customer group that has low network communication capacity, WIS functions need to be kept simple and the use of multimedia should be limited. As shown in Figure 1, technology affects the construction of a WIS (including system interface), but should be transparent to users since they may lack the necessary skills to handle complex computer operations. Customers, however, may affect technology development and employment through their interactions.

Business interface

An e-tailing business interface can be quite complex, including a WIS interface, interfaces to connect with other WIS, and a traditional business interface outside the Web. The system interface and functionality design are critical to usability, especially for WIS that have high requirements, such as an efficiency frontier (shown in Figure 3(b)) and multiple needs for multiple users. Many techniques and concepts are being developed to help fulfill these requirements. For example, nested design strategy allows systems have two levels of interface complexity: novice mode and expert mode (Nielsen, 1993). The concept of interface plasticity or elasticity focuses on the interface’s ability to continually interact with and learn from users, and gradually provide more functionality and complexity. The universal user interface (UUI) (Kobsa and Stephanidis, 1998; Shneiderman, 2000; Stephanidis, 2000) provides a principled and systematic approach towards coping with diversity in the target user groups and tasks. It provides a pathway towards accommodating the interaction requirements of the broadest possible end user population. It is defined as an interactive system, which comprises a single (unified) interface specification, targeted to potentially all user categories and contexts of use. Since the WIS should provide various modes of information presentation, multimedia is needed to achieve UUI and universal usability. Multimedia interface design is a rather new and challenging topic for WIS. Multimedia can help to facilitate access for novice users and increase productivity for experts.

Interfaces from other WIS may include the information and presentation of a particular electronic retailer in other WIS domains. Other businesses or organizations may provide related content or evaluations, and customers may exchange knowledge and experience through virtual communities. While the interfaces of these WIS may often be out of an e-tailer’s control, they are important since they can be very effective marketing tools. Business interfaces outside the Web may include traditional stores, service centers, advertising programs, etc. This interface should be consistent with and complement the Web interface. The existing business interface may also pose requirement for WIS interface design. For a highly integrated click-and-brick business, the most visual elements of the physical store, such as its color and logo, should also be used in the WIS interface. This will help to provide a familiar and trusted environment for its customers. Designing the overall business interface and configuring the Web interface depends on business strategies and operations.

Discussion and future research

Research on Web-based information systems (WIS) tends to address specific developmental stages or applications in specific problem domains. This paper presents a more abstract model for WIS design in e-tailing. Through this model, we examine several business, technology and user issues and challenges for the development and implementation of WIS. The integrated and overall view presented in our model can provide researchers with a better understanding of WIS issues requiring further investigation, and can provide practitioners with a foundation to understand WIS requirements and features for commercial success. Technology development will provide the basis for e-tailing development. Multimedia may ultimately extend the capability of e-tailers and make more online opportunities possible. To empower multimedia, communication capacity and proper system architecture are required. These technology challenges are major tasks for computer scientists and electronic engineers. Meanwhile, businesses
need to explore the useful and usable applications of newly developed technologies. Human computer interaction is still a relatively new and evolving area for e-tailing, where WIS customers may pose different requirements and acceptance levels from those of traditional systems. Online consumers also differ from offline consumers since they have more market knowledge and easier access to product/service alternatives. Consumers may have different evaluation criteria, perceptions and decision-making processes when online and offline. These differences need to be further explored through theoretical and empirical research.

WIS may incur many complex challenges, but they are critical to the future success of the e-tailing industry. As more WIS are developed for commercial applications, the fast changing business environment, user groups, and severe competition will pose higher design requirements. With more available techniques and choices, businesses will have to carefully evaluate their alternatives to integrate valuable components in their products/service offerings.

References

A model for Web-based information systems in e-retailing

Fang Wang and Milena M. Head

321